

三菱电机通用可编程控制器

MELSEG Q series

QnPHCPU/QnPRHCPU编程手册(过程控制指令篇)

●安全注意事项 ●

(在使用本设备之前,请一定阅读这些说明)

在使用本产品之前,请仔细阅读该手册以及手册中阐述的相关指南,要注意安全,正确操作产品。 该手册所给出的指导都是与本产品有关的。欲了解可编程控制器系统的安全性指导,请阅读 CPU 模块的用户手册。

请妥为保存本手册,使其在需要时可随时到手,一定要将其转交到最终用户手中。

A-1

印刷日期	*手册编号	版本
2005年02月	SH (NA) -080449CHN-A	第一版
2008年05月	SH (NA) -080449CHN-B	第二版 由于新增 QnPRHCPU 机型的修改 部分改版 手册名称更改 QnPHCPU 编程手册(过程控制指令)→QnPHCPU/QnPRHCPU 编程手册(过程控制指令篇) 术语更改 DVL: 变化率限制值→偏差限制值 部分修改
		关于手册、目录、2.2.1、2.2.3、3.2、3.3.5、6.2.3、第7章、8.2、8.5、9.1、9.2、9.3、9.4、9.5、9.8、9.18、9.21、10.1、10.2、附录 2.3、附录 2.7 新增机型 Q02PHCPU、Q06PHCPU 新增 本手册中使用的总称和略称

英文手册版本: SH-080316E-D

此手册并未给予工业所有权或其它任何权利,它也未给予任何专利授权。三菱电机公司不对由于使用此手册的内容引起的任何工业所有权问题负责。

咸谢您购买三萘 MELSEC-Q	系列(Q模式)可编程控制器。

在使用本产品之前,请仔细阅读该手册以更好地了解您购买的 Q 系列 (Q 模式)可编程控制器的功能及性能,以便于正确使用。

日表	
目录 安全注意事项. A - 1 修订履历. A - 2 目录. A - 3 关于手册. A - 7 本手册中使用的总称和略称. A - 7	2
1. 概述 1 - 1至1 - 10)
1.1 特点 1 - 1 1.2 PID 控制概述 1 - 2 1.3 正向运算和反向运算 1 - 8 1.4 PID 控制 1 - 6 1.4.1 比例运算(P运算) 1 - 6 1.4.2 积分运算(I运算) 1 - 7 1.4.3 微分运算(D运算) 1 - 8 1.4.4 PID 运算 1 - 9	3 7 3
2. 过程控制指令的结构与组合 2 - 1 至 2 - 6	;
2. 1 指令配置.2 - 12. 2 在软元件中指定数据的方法.2 - 22. 2. 1 位数据.2 - 22. 2. 2 字型(16 位)数据.2 - 22. 2. 3 双字型(32 位)数据.2 - 32. 2. 4 实数数据(浮点数据).2 - 32. 2. 5 过程控制指令运算错误代码.2 - 42. 2. 6 指令执行条件.2 - 42. 2. 7 步数.2 - 42. 2. 8 变址修饰.2 - 52. 3 组合过程控制指令可用的基本回路类型.2 - 5	2 2 3 4 4 5
3. 过程控制指令所用的数据及如何指定数据 3-1至3-10)
3.1 过程控制指令及数据配置3 - 13.2 本地工作内存3 - 33.3 过程控制指令所用的数据3 - 43.3.1 回路内存3 - 43.3.2 输入数据3 - 63.3.3 块内存3 - 63.3.4 运算常数3 - 63.3.5 回路标签内存分配内容3 - 7	3 1 1 5 5

4. 如何执行过程控制指令	4-1至4-2
4.1 执行周期和控制周期	4 - 1
4.2 程序的概念	4 - 2
5. 执行条件切换及其功能	5 - 1 至 5 - 4
5.1 执行条件切换	
5.1.1 回路运行/停止	
5.2 功能	5 - 2
5.2.1 跟踪功能	5 - 2
5.2.2 级联回路跟踪	5 - 2
5.2.3 回路选择器跟踪	5 - 3
6. 指令列表	6 - 1至6 - 6
6.1 如何阅读指令列表图	C 1
6.2 功能	
6.2.1 I/0 控制指令	
6.2.2 控制运算指令	
6.2.3 补偿运算指令	
6.2.4 算术运算指令	
6.2.5 比较运算指令	
6.2.6 自整定指令	
7 加尔阿法北人	7 1 万 7 4
7. 如何阅读指令	7 - 1至7 - 4
7. 如何阅读指令	7 - 1至7 - 4
	7 - 1 至 7 - 4
7. 如何阅读指令8. I/0 控制指令	7-1至7-4 8-1至8-36
8. I/0 控制指令	8 - 1至8 - 36
8. I/0 控制指令 8. 1 模拟输入处理(S. IN)	8-1至8-36
8. I/0 控制指令 8. 1 模拟输入处理(S. IN)	8-1至8-36 8-1 8-6
8. I/0 控制指令 8. 1 模拟输入处理(S. IN)	8 - 1至8 - 36 8 - 1 8 - 6 8 - 12
8. I/0 控制指令 8. 1 模拟输入处理(S. IN)	8 - 1至8 - 36
8. I/0 控制指令 8. 1 模拟输入处理(S. IN)	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY)	8 - 1至8 - 36
8. I/0 控制指令 8. 1 模拟输入处理(S. IN). 8. 2 带模式切换的输出处理 1(S. 0UT1). 8. 3 带模式切换的的输出处理 2(S. 0UT2). 8. 4 手动输出(S. MOUT). 8. 5 时间比率(S. DUTY). 8. 6 选组计数器(S. BC). 8. 7 脉冲积分(S. PSUM).	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY) 8. 6 选组计数器(S. BC) 8. 7 脉冲积分(S. PSUM)	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY) 8. 6 选组计数器(S. BC) 8. 7 脉冲积分(S. PSUM)	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN). 8. 2 带模式切换的输出处理 1(S. OUT1). 8. 3 带模式切换的的输出处理 2(S. OUT2). 8. 4 手动输出(S. MOUT). 8. 5 时间比率(S. DUTY). 8. 6 选组计数器(S. BC). 8. 7 脉冲积分(S. PSUM).	8 - 1 至 8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY) 8. 6 选组计数器(S. BC) 8. 7 脉冲积分(S. PSUM)	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理 (S. IN) 8. 2 带模式切换的输出处理 1 (S. OUT1) 8. 3 带模式切换的的输出处理 2 (S. OUT2) 8. 4 手动输出 (S. MOUT) 8. 5 时间比率 (S. DUTY) 8. 6 选组计数器 (S. BC) 8. 7 脉冲积分 (S. PSUM) 9. 控制运算指令 9. 1 基本 PID (S. PID) 9. 2 2 自由度 PID 控制 (S. 2PID)	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY) 8. 6 选组计数器(S. BC) 8. 7 脉冲积分(S. PSUM) 9. 控制运算指令 9. 1 基本 PID(S. PID) 9. 2 2 自由度 PID 控制(S. 2PID) 9. 3 位置类型 PID 控制(S. PIDP)	8 - 1 至 8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN). 8. 2 带模式切换的输出处理 1(S. 0UT1). 8. 3 带模式切换的的输出处理 2(S. 0UT2). 8. 4 手动输出(S. MOUT). 8. 5 时间比率(S. DUTY). 8. 6 选组计数器(S. BC). 8. 7 脉冲积分(S. PSUM). 9. 控制运算指令 9. 1 基本 PID(S. PID). 9. 2 2 自由度 PID 控制(S. 2PID). 9. 3 位置类型 PID 控制(S. 2PID). 9. 4 采样 PI 控制(S. SPI). 9. 5 I-PD 控制(S. IPD). 9. 6 混合 PI 控制(S. IPD).	8 - 1至8 - 36
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY) 8. 6 选组计数器(S. BC) 8. 7 脉冲积分(S. PSUM) 9. 控制运算指令 9. 1 基本 PID(S. PID) 9. 2 2 自由度 PID 控制(S. 2PID) 9. 3 位置类型 PID 控制(S. PIDP) 9. 4 采样 PI 控制(S. SPI) 9. 5 I-PD 控制(S. IPD) 9. 6 混合 PI 控制(S. BPI) 9. 7 比率(S. R)	8 - 1 至 8 - 36
8. I/O 控制指令 8. 1 模拟输入处理 (S. IN) 8. 2 带模式切换的输出处理 1 (S. OUT1) 8. 3 带模式切换的的输出处理 2 (S. OUT2) 8. 4 手动输出 (S. MOUT) 8. 5 时间比率 (S. DUTY) 8. 6 选组计数器 (S. BC) 8. 7 脉冲积分 (S. PSUM) 9. 控制运算指令 9. 1 基本 PID (S. PID) 9. 2 2 自由度 PID 控制 (S. 2PID) 9. 3 位置类型 PID 控制 (S. PIDP) 9. 4 采样 PI 控制 (S. SPI) 9. 5 I-PD 控制 (S. IPD) 9. 6 混合 PI 控制 (S. BPI) 9. 7 比率 (S. R) 9. 8 上/下限报警 (S. PHPL)	$8-1 \Xi 8-36$ $8-1 \Xi 8-36$ 8-6 8-12 8-17 8-21 8-28 8-32 $9-1 \Xi 9-112$ 9-9 9-9 9-9 9-17 9-9 9-17 9-26 9-33 9-41 9-48 9-53
8. I/O 控制指令 8. 1 模拟输入处理(S. IN) 8. 2 带模式切换的输出处理 1(S. OUT1) 8. 3 带模式切换的的输出处理 2(S. OUT2) 8. 4 手动输出(S. MOUT) 8. 5 时间比率(S. DUTY) 8. 6 选组计数器(S. BC) 8. 7 脉冲积分(S. PSUM) 9. 控制运算指令 9. 1 基本 PID(S. PID) 9. 2 2 自由度 PID 控制(S. 2PID) 9. 3 位置类型 PID 控制(S. PIDP) 9. 4 采样 PI 控制(S. SPI) 9. 5 I-PD 控制(S. IPD) 9. 6 混合 PI 控制(S. BPI) 9. 7 比率(S. R)	$8-1 \Xi 8-36$ $8-1 \Xi 8-36$ 8-6 8-12 8-17 8-21 8-28 8-32 $9-1 \Xi 9-112$ 9-9 9-9 9-9 9-17 9-9 9-17 9-26 9-33 9-41 9-48 9-53

9. 10	积分(S. I)		9	_	61
9. 11	微分(S. D)		9	_	63
9. 12	空载时间(S. DED)		9	_	65
9. 13	高值选择器(S. HS)		9	-	68
9. 14	低值选择器(S. LS)		9	-	70
9. 15	中值选择器(S. MID)		9 -	_	72
	均值 (S. AVE)				75
	上/下限限制器(S. LIMT)				77
	变化率限制器 1 (S. VLMT1)				79
	变化率限制器 2(S. VLMT2)				81
	2位置 ON/OFF (S. ONF2)				83
	3 位 ON/OFF (S. ONF3)				89
	死区(S. DBND)				95
	程序设定器(S. PGS)				97
	回路选择器(S. SEL)				.02
	无冲击切换(S. BUMP)				
9. 26	模拟内存(S. AMR)		9 -	- 1	.10
10. 补	偿运算指令	10 - 1	至 10	_	16
201					
10.1	函数发生器(S. FG)		10	_	1
10.2	反函数发生器(S. IFG)		10	_	3
10.3	标准滤波器(S. FLT)		10	_	5
10.4	累加器(S. SUM)		10	_	8
10.5	温度/压力补偿(S. TPC)		10	-	10
10.6	工程值变换(S. ENG)		10	_	12
10.7	工程值逆转换(S. IENG)	• • • • • •	10	-	14
11	「术运算指令	11 - 1	平 11	_	19
11. 3	- 小之升11((1 1	工 11		12
11. 1	加法(S. ADD)		11	_	1
11.2	减法(S. SUB)		11	_	3
11.3	乘法(S. MUL)		11	_	5
11.4	除法(S. DIV)		11	_	7
11.5	开平方(S. SQR)		11	_	9
11.6	ルコは (C ARC)				11
	绝对值(S. ABS)		11	-	
10 11					
12. tt		12 - 13			
	校运算指令	12 - 1	至 12	_	10
12. 1	文	12 - 1	至 12 12	- 2-	10
12. 1 12. 2	対 対 大 大 大 大 大 大 大 大	12 - 1	至 12 12	- 2- 2-	10 1 3
12. 1 12. 2 12. 3	大	12 - 1	至 12 12 12	- 2- 2- 2-	10 1 3 5
12. 1 12. 2 12. 3 12. 4	大于比较(S.>) , , , , , , , , , , , , , , , , , , ,	12 - 1	至 12 15 15 15	- 2- 2- 2- 2-	10 1 3 5 7
12. 1 12. 2 12. 3 12. 4	大	12 - 1	至 12 15 15 15	- 2- 2- 2- 2-	10 1 3 5 7
12. 1 12. 2 12. 3 12. 4	X 校运算指令 大于比较(S. >) 小于比较(S. <)	12 - 1	至 12 12 12 12	- 22- 22- 22- 22- 22-	10 1 3 5 7 9
12. 1 12. 2 12. 3 12. 4 12. 5	X 校运算指令 大于比较(S. >) 小于比较(S. <)	12 - 1	至 12 1; 1; 1; 1; 至 13	- <u></u> 2- 2- 2- 2- 2-	10 1 3 5 7 9

A - 5

14. 错误代码	14 - 1至14 - 2
14.1 错误代码列表	
附录	附录 - 1至附录 - 20
附录 1 范例程序 附录 2 回路标签内存表 附录 2.1 PID 控制(SPID) 2 个自由度 PID 控制(S2PID) 采样 PI 控制(SSPI) 附录 2.2 I-PD 控制(SIPD), 混合 PI 控制(SBPI) 附录 2.3 手动输出(SMOUT), 监视器(SMON) 附录 2.4 带监视器的手动输出(SMWM), PIDP 控制(SPIDP) 附录 2.5 2 位 0N/0FF 控制(SONF2), 3 位 0N/0FF 控制(SONF3) 附录 2.6 选组计数器(SBC) 附录 2.7 比率控制(SR) 附录 3.1 每条指令的运算处理时间 附录 3.2 2 个自由度 PID 控制回路的运算处理时间.	附录 - 5 附录 - 5 附录 - 7 附录 - 9 附录 - 10 附录 - 13 附录 - 14 附录 - 16
索引	索引 - 1 至索引 - 4

A - 6

关于手册

和 Q/QnACPU 相关的手册如下表所列。 请选购您所需要的手册。

相关手册

手册名称		手册编号
过程 QCPU 用户手册 (硬件设计,维修及检测) 描述 CPU 模块,电源模块,基本单元,扩展电缆及内存卡的规格。	(单独出售)	SH0800483ENG
过程 QQCPU 用户手册(功能扩展,程序基础原理) 本手册解释为过程 CPU 模块创建程序所必须的功能,编程思想、软元件等。	(单独出售)	SH080484ENG
QCPU(Q模式)/QnACPU程序手册(公共指令) 本手册描述如何使用顺序指令、基本指令和应用指令。	(单独出售)	SH-080450CHN
QCPU(Q模式)/QnACPU程序手册(SFC) 描述 MELSAP3 系统配置、性能规格、功能、程序、调试及出错代码。	SH-080285C	
QCPU(Q 模式)程序手册(MELSAP-L) 描述 MELSAP-L 系统配置、性能规格、功能、程序、调试及出错代码等。	(单独出售)	SH-080412C

本书中使用的总称和略称

除非特别说明,本手册使用的总称和略称如下表所示。

总称/略称	总称/略称的内容
QnPHCPU	Q02PHCPU、Q06PHCPU、Q12PHCPU、Q25PHCPU 的略称。
QnPRHCPU	Q12PRHCPU、Q25PRHCPU 的略称。

备忘录	

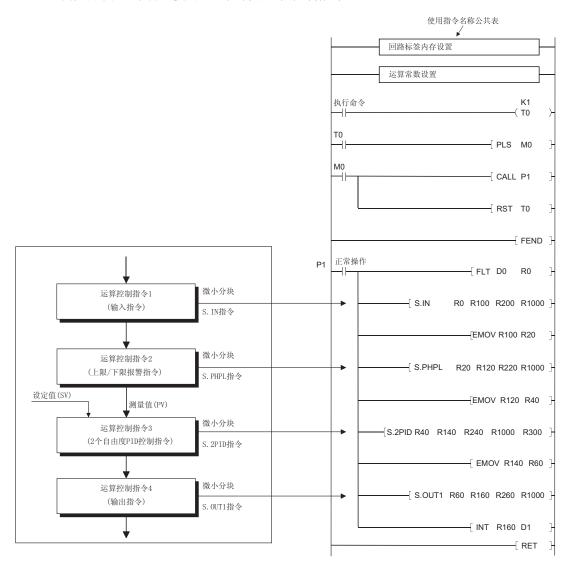
1

1 概述

本手册描述安装在 QnPHCPU/QnPRHCPU 上的过程控制指令。

1.1 特点

过程控制指令具有以下特点。

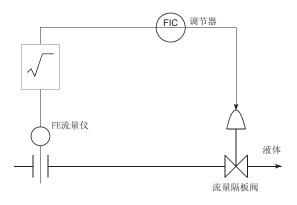

(1) 使用浮点数据

具有处理浮点类型实数数据的能力,指令能完成大范围和精确的运算。

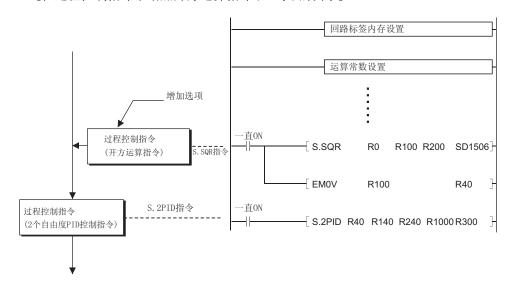
(2) 增强的系统调节有效性

通过将微小分块的过程控制指令进行组合来实现 PID 控制。 这将在过程控制指令基础上确认操作,确保系统调整的有效性。

例如)用于2个自由度的PID控制的过程控制指令



1 - 1 1 - 1

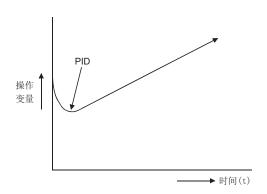

(3) 应用于大范围控制可自由组合过程控制指令

作为可选功能,一条过程控制指令可以插入连接过程控制指令的回路中。

如下图所示,在对输入信号进行开方运算以得出输出信号时,增加一个开方运算指令(S. SQR)。

[在过程控制指令中增加开方运算指令(S. SQR)的例子]

(4) 自动检测警报


在该系统中可以自动检测各种警报,可安全地构筑系统。

(5) PID 运算采用速率型不完全微分形式

相对于完全微分形式,不完全微分具有如下优势。

- (a) 微分增益为 1/η, 可以设定有限值。
- (b)输出包括时间放大率。所以系统能对运算沿做出反应,偏差运算使运动正确。

1.2 PID 控制概述

PID 控制应用于过程控制的流量、速度、风量、温度、压力、复合等等。如图 1.1 所示结构, PID 控制将控制对象保持在设定值。

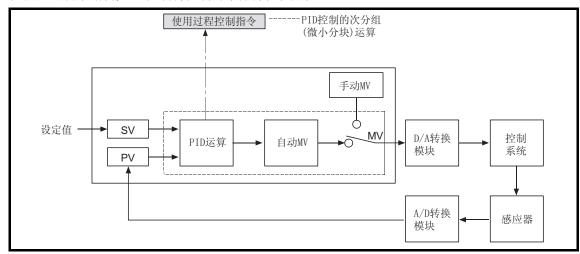


图 1.1 过程控制应用举例

PID 控制将在检测测量值(测定量: PV)和设定值(设定值: SV),调整输出值(操作值: MV)以消除测定量和设定值之间的差。

在 PID 控制中,比例运算(P),积分运算(I)和微分运算(D)可以组合计算操作值,使测定量快速而精确地等于设定值。

- 如果测定量和设定值之间的差比较大,操作值会很快增加以接近设定值。
- 当测定量和设定值之间的差缩小时,操作值会缓慢精确地接近设定值。

1.3 正向运算和反向运算

- (1)正向运算是指当测定量增大到超过设定值时增大操作值的运算。
- (2) 反向运算是指当测定量减小到超过设定值时增大操作值的运算。
- (3) 正向运算和反向运算能够在设定值和测定量之差增大时增大操作值。
- (4)图 1.2 所示为由正向运算和反向运算实现的过程控制的一个例子。

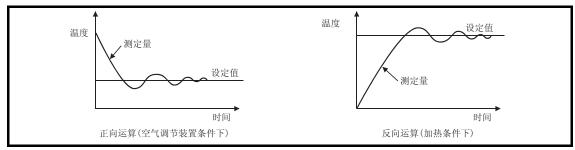


图 1.2 由正向运算和反向运算实现的过程控制示例

1.4 PID 控制

本节解释采用过程控制指令实现 PID 控制的"比例运算"、"积分运算"、"微分运算"。

1.4.1 比例运算(P运算)

本节解释采用比例运算的控制算法。

- (1)比例运算是指比较偏差(设定值和测定量之间)以确定操作值的运算。
- (2) 采用比例运算时偏差值(DV)和操作值(MV)之间的变化关系可由下述算式表示:

Kp 称为比例增益或比例常数。

(3) 当偏差为某一常量阶跃响应时的比例运算如图 1.3 所示。

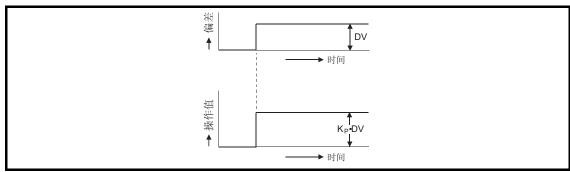


图 1.3 偏差为常量时的比例运算

- (4)操作值在-10至110%之间波动。
 - 当 Kp 增大时,对应于偏差的操作值亦增大,从而增强补偿运算的效果。
- (5) 在比例运算中存在超调。

1.4.2 积分运算(I运算)

本节解释采用积分运算的控制算法。

- (1) 积分运算是指当偏差存在时逐渐改变操作值以消除偏差的运算。该操作可以消除在比例运算实现的控制中的超调。
- (2) 在积分运算中,从偏差开始出现,直到积分运算的操作值达到比例运算的操作值,这段时间称为积分时间(T_I)。
 - (a) 增大积分时间,积分作用的效果将会削弱。 (达到稳定状态的时间更长)。
 - (b) 减小积分时间,积分作用的效果将会增强。 然而,由于积分运算效果增强,振荡将会增大。
- (3) 当偏差为某一常量阶跃响应时的积分运算如图 1.4 所示。

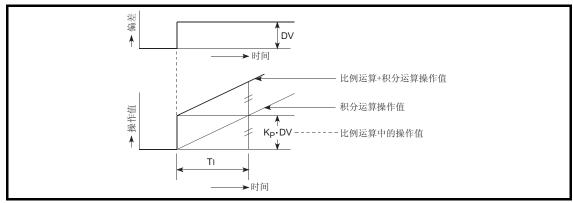


图 1.4 偏差为常量时的积分运算

(4)积分运算常与比例运算组合使用称为 PI 运算或与比例运算和微分运算组合使用称为 PID 运算。

仅仅采用积分运算是无法实现控制的。

1 - 7 1 - 7

1.4.3 微分运算(D运算)

本节解释采用微分运算的控制算法。

- (1) 微分运算是指当偏差已经存在时将比例操作值加至变化速度以消除偏差的运算。 微分运算能够避免对象控制中由扰动引起的巨大变化。
- (2) 微分时间(T_D)是指从偏差开始出现,直到微分运算操作值达到比例运算操作值的时间。增大微分时间,微分作用的效果将会增强。
- (3) 当偏差为某一常量阶跃响应时的微分运算如图 1.5 所示。

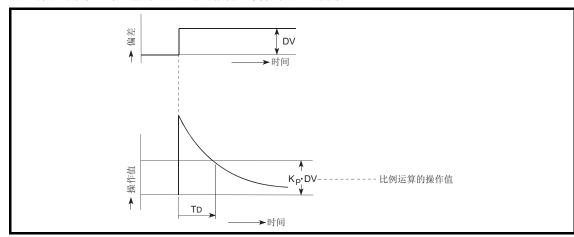


图 1.5 偏差为常量时的微分运算

(4) 微分运算常与比例运算组合使用称为 PD 运算或与比例运算和积分运算组合使用称为 PID 运算。

仅仅采用微分运算是无法实现控制的。

1 概述

1.4.4 PID运算

本节解释采用比例运算(P运算)、积分运算(I运算)、微分运算(D运算)组合的控制算法。

- (1)PID运算采用(P+I+D)运算来控制操作值的计算。
- (2) 当偏差为某一常量阶跃响应时的 PID 运算如图 1.6 所示。

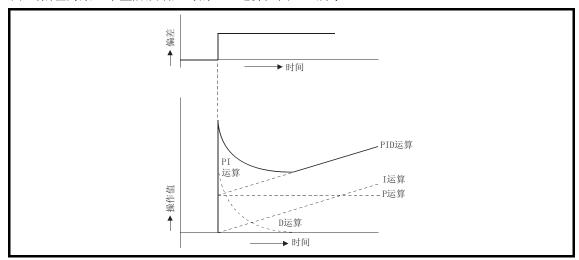


图 1.6 偏差为常量时的 PID 运算

1 概述	MELSEC-Q
备忘录	

2 过程控制指令的结构与组合

2.1 指令配置

用于过程控制的指令可以分为两部分,他们是"指令部分"和"软元件部分" 指令部分和软元件部分如下所示。

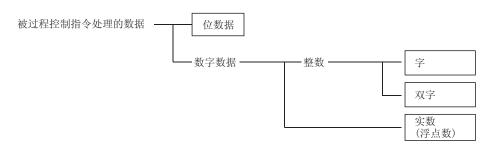
- 指令部分 表明这些指令的功能。
- 软元件部分......表明运算所需的数据和运算结果所存放的地址。

软元件部分分为源软元件和目标软元件。

(1) 源(S)

源存放着运算所需要的数据。

- (a) 在过程控制指令中, 指定了存放着源数据的头软元件。
- (b) 在过程控制指令完成前,数据必须存放在指定的软元件中。
- (c) 改变源数据就可以改变指令中所用的数据。


(2) 目标(D)

目标是指运算结束后数据存放的地方。

- (a) 设置存放数据的目标软元件。
- (b) 对于有些指令,在指令执行前,用于运算的数据必须存放在目标地址中。

2.2 在软元件中指定数据的方法


下列4种类型的数据可被过程控制指令所用。

2.2.1 位数据

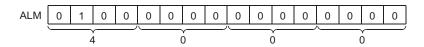
位数据以单个的位被处理。

在 QnPHCPU/QnPRHCPU 中,以 1 个位为单位将字软元件用于报警状况、选择。 在指定了字软元件的位后,你可以使用 1/0 设定每个位。

用格式" 字软元件 . 位号 "指定字软元件的位。

(位号用16进制数表示。)

例如, 指定 DO 的第5位(b5)用 DO.5表示, DO 的第10位(b10)用 DO.A表示。


然而, 你不能指定时钟(T)、保持时钟(ST)、计数器(C)和变址寄存器(Z)的位。(例如: 你不能指定 Z0.0。)

2.2.2 字型(16位)数据

字型数据是16位的数字数据,常被用于回路标签内存、一组位数据、运算常数等。

- 10 进制常数..... K-32768 至 K32767
- 16 进制常数..... H0000 至 HFFFF

例如)对于回路标签内存 ALM(标准值为 4000₁)

2.2.3 双字型(32位)数据

双字型是32位的数字数据。

● 10 进制常数..... K-2147483648 至 K2147483647

● 16 进制常数..... H00000000 至 HFFFFFFF

当使用双字型数据时,指定使用的字软元件地址是低 16 位的字格式。 32 位的数据存放在(指定的字软元件地址)和((指定的字软元件地址)+1)。 例如)当 D10 被指定为双字时, D10 和 D11 被用来表示。

D11	D10
(BW1)H	(BW1)L

2.2.4 实数数据(浮点数据)

用于被运算的和存放运算结果的数据为 32 位浮点数据。 浮点数据用两个字软元件表示,如下所示。

1. [固定小数点部分] × 2 [指数部分]

每个位在浮点数据内部的定义如下所示。

- 固定小数点部分符号位 b31。
 - 0: 正数
 - 1: 负数
- 指数部分表示 2ⁿ's n 为 b23 至 b30 表示的值。 n 从 b23 至 b30 的 BIN 值如下所示。

b23 至 b30	FFн	FEH	FDн		81н	80н	7FH	7Ен		\int	02н	01н	00н
n	非数字	127	126	()	2	1	0	-1	(\int	-125	-126	非数字

● 固定小数点部分 当 1. XXX XXX... 用 2 进制表示时, 用 23 个位表示 XXXXXX... 的值, b0 至 b22,。

要点

- 监视功能 GX Developer 允许你监视 QnPHCPU/QnPRHCPU 的实数。
- 实数的范围为 0, ± $2^{-126} \le |$ 实数值| < ± 2^{128} .
- 表示 0 时, b0 至 b31 的所有位都设为 0。

2.2.5 过程控制指令运算错误代码

过程控制指令的运算错误信息存放在下面的特定寄存器中,非运算错误所引起的错误代码在 QCPU(Q Mode)/QnACPU 编程手册(通用指令)中列出。(错误代码存放在寄存器 SDO。)

注意

下列不同于运算错误的错误内容存放在特定寄存器中。

错误代码 4100..... 不能被运算的数据。

4300..... 特定指令不正确。

4301..... 软元件的过程控制指令个数不正确。

4302..... 不能被指定的软元件被指定。

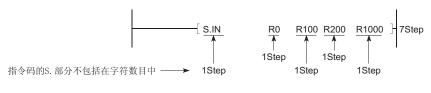
(1) 对于错误代码 4100, 详细的信息存放在 SD1502 和 SD1503。当过程控制指令运算错误没有发生时, SD1502 和 SD1503 被设定为 0。

SD1502..... 当过程控制指令运算过程中发生错误时的错误代码。

SD1503..... 当错误发生时的指令执行的序号。

错误内容的解释见14章。

2.2.6 指令执行条件


过程控制指令是在执行时输入条件为 0N 的指令。

2.2.7 步数

过程控制指令的步数由于指令的字符数、所用的软元件、间接设定是否正确等因素而有所不同。扩展指令的基本步数如下所示。

过程控制指令的步数 =
$$2 + \frac{指令的字符数(注1)}{2} + 软元件数$$

注1: 当字符的数目为奇数时数目要加1。(例如除法运算的结果要去掉小数部分)

2+2/2+4=7Step

详细内容见QCPU(Q模式)/QnACPU编程手册(通用指令篇)。

2.2.8 变址修饰

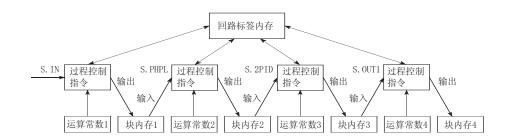
过程控制指令的变址修饰的使用和 QnPHCPU/QnPRHCPU 基本指令的使用方法相同。

2.3 组合过程控制指令可用的基本回路类型

回路类型	结构	应用
2 个自由度 PID 控制 (S2PID)	SET PV MV INPUT → S.IN → S.PHPL → S.2PID → S.OUT1 → OUTPUT SET SV PV MV INPUT → S.IN → S.PHPL → S.2PID → S.DUTY → OUTPUT	用于普通 PID 控制(2 个自由度)。 - (速率型) 为每个控制回路引导 PID 运算
PID 控制 (SPID)	SET PV MV INPUT S.IN S.PHPL S.PID S.OUT OUTPUT SET SV PV MV INPUT S.PHD S.PHD S.PHD S.DUTY OUTPUT	用于普通 PID 控制。(速率型) 为每个控制回路引导 PID 运算
PIDP 控制 (SPIDP)	SETSV	用于普通 PID 控制。(位置型) 为每个控制回路引导 PID 运算
采样 PI 控制 (SSPI)	SET SV PV MV INPUT S.IN S.PHPL S.SPI S.OUT1 OUTPUT	用于长死区时间的过程。 PI 控制仅当每个控制回路中执行时间中的 输出保持不变时才被执行。
I-PD 控制 (SIPD)	SET SV PV MV INPUT S.IN S.PHPL S.IPD S.OUT1 OUTPUT	用于慢的响应过程从而当给定值变化时不影响控制输出。
混合 PI 控制 (SBPI)	SET SV PV MV INPUT -> S.IN -> S.PHPL -> S.BPI -> S.OUT1 -> OUTPUT	用于操作值长时间不变但是有突变的过 程。
比率控制 (SR)	SET SV PV MV INPUT1-> S.IN -> S.PHPL -> S.R -> S.OUT2 -> OUTPUT	用于控制给定的操作值以恒定的速率变化 至另一变化的值。
2 位 ON/OFF 控制 (SONF2)	SET SV MV PV S.IN S.PHPL S.ONF2 OUTPUT	根据偏移量的正负, 控制操作值为 ON 或OFF。
3 位 ON/OFF 控制 (SONF3)	SET SV MV PV S.IN S.PHPL S.ONF3 OUTPUT	3 个区的 3 位置的 0N/0FF 控制信号以响应 由测定量的控制执行。 这个控制可以抑制操作值的突然变化。

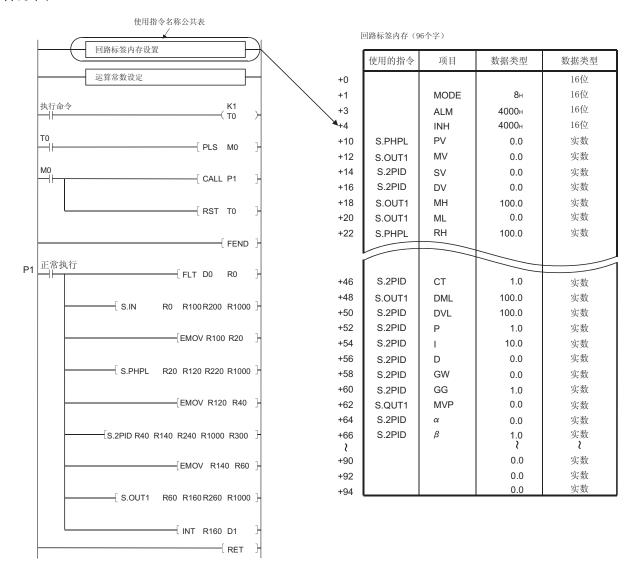
回路类型	结构		应用
选组计数器 (SBC)	INPUT →S.PSUM→S.BC →	OUTPUT	通过类似水箱等部件中内置的批处理流程 来控制阀门的开/关。
程序设定软元件 (SPGS)	S.PGS MV	OUTPUT	输出由于预设值时间的变化而变化。
手动输出 (SMOUT)	SMOUT MV	OUTPUT	手动运算最终结果。
监视器 (SMON)	INPUT -> S.IN -> S.PHPL -> S.PHPL	OUTPUT	输入测定量或者检测过程错误如高/低值报 警。
带监视器的手动输出 (SMWM)	PV MV INPUT -> S.IN -> S.PHPL -> S.MOUT ->	OUTPUT	当检测到没有错误发生时,输入测定量和 引导手动运算。
回路选择器 (SSEL)	INPUT1- S.SEL	OUTPUT	用于信号选择。

2 - 6 2 - 6


3 过程控制指令所用的数据及如何指定数据

3.1 过程控制指令及数据配置

本节介绍过程控制指令使用的数据结构(数据流)

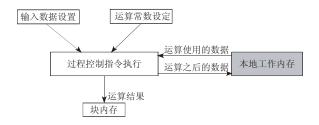

- (a) 当使用回路标签时的结构
 - 1) 回路模块中有显示控制信息的公共存储区域。这种公共信息的收集称为回路标签,存储内存称回路标签内存。
 - 2) 通过监视回路标签,可以监视并且调节回路(控制模块)

块图

(b) 梯形图中的回路标签内存和运算常数位置

梯形图

梯形图中符号的含义表示如下:



3.2 本地工作内存

本地工作内存在过程控制指令运算中作为临时的存储区域(内存仅在微小分块中使用) 下列指令使用本地工作内存

指令名称	备注
S. LLAG(超前-滞后) S. D(微分) S. DED(死区时间) S. FLT(标准滤波器) S. BUMP(无冲击切换) S. AT1(自整定)	存储 0S 自身的中途运算结果(用户不能使用)
S. FG(函数发生器) S. IFG(反函数发生器)	存储用户使用的折线协调值(Xn, Yn),并在此基础上执行运算。

块图

梯形图

指令名称	S.LLAG(超前-滯后)
输入数据起始元件	RO
块内存起始软元件	R100
运算常数起始软元件数	R20
本地工作内存起始软元件	R200

使用的指令决定是否改变本地工作内存运用,请参考相应指令的解释章节。

3.3 过程控制指令所用的数据

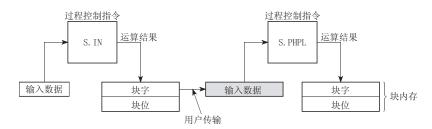
下列是供过程控制指令所用的数据:

● 回路内存
 3.3.1节
 ◆ 输入数据
 3.3.2节
 ◆ 块内存
 3.3.3节
 ○ 运算常数章节
 3.3.4节
 3.2节

3.3.1 回路内存

(1) 回路内存

- (a) 回路内存是存储通常被过程控制指令使用,被指定为回路类型数据的区域。 在过程控制指令执行的过程中,回路内存通常有一个区域存储 QnPHCPU/QnPRHCPU 系统使用 的数据。
- (b) 回路内存具有"回路标签内存"和"回路标签过去值内存"区域。
- (c) 回路内存包含 128 个字(字软元件: 128 点)。 当设置回路内存区域时,指定可以连续占 128 个字的软元件。

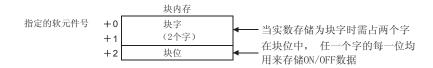

(2) 回路标签内存

- (a) 回路标签内存是存储通常被过程控制指令使用,被指定为回路类型数据的区域,请参见2.3节。
- (b) 回路标签内存包括 96 个字。
- (c) 在回路标签内存中过程控制指令使用的区域的应用,请参考附录 2(回路标签内存列表)

- (3) 回路标签过去值内存
 - (a) 回路标签过去值内存是在过程控制指令执行时,QnPHCPU/QnPRHCPU 系统使用的区域 用户不能在运行时写入数据到该内存中去。 如果用户在运行过程中在回路标签过去值内存中写入数据,将不能执行正常的运算。
 - (b) 回路标签过去值内存是继回路标签内存之后的一个 32 字区域。
 - (c) 在过程控制指令开始时, 在回路标签过去值内存中写入"0"。

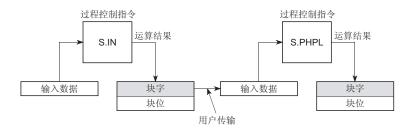
3.3.2 输入数据

- (1)输入数据是一个赋予每一个过程控制指令的变量数据。
- (2)输入数据使用的是存储先前执行的过程控制指令运算结果的块内存的块字。


(3) 使用的指令决定是否改变输入数据的应用。 请参考对应指令的解释章节。

备注

*: 块内存请参考 3.3.3 节。


3.3.3 块内存

块内存是存储过程控制指令对应的输出信息的区域。 块内存有"块字"和"块位" 使用的指令决定是否改变块内存应用。

(1) 块字(BW)

- (a) 块字是存储过程控制指令运算结果的区域。
- (b) 对于下一个被回路链接的过程控制指令,使用存储在块字中的数据。

(2) 块位(BB)

块位是在过程控制指令执行时,存储相应的报警数据的区域。 对于块位,b0 至 b15 的 16 位代表 BB1 至 BB16。

	b15	5		b12	-			b8				b4				b0
	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
掛台	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
大型	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1
	6	5	4	3	2	1	0									

3.3.4 运算常数

- (1)运算常数是存储只被一个过程控制指令使用的数据区域。
- (2)运算常数改变的应用,取决于使用的指令。请参见相应指令的解释章节。

3.3.5 回路标签内存分配内容

回路标签内存分配内容表示如下:

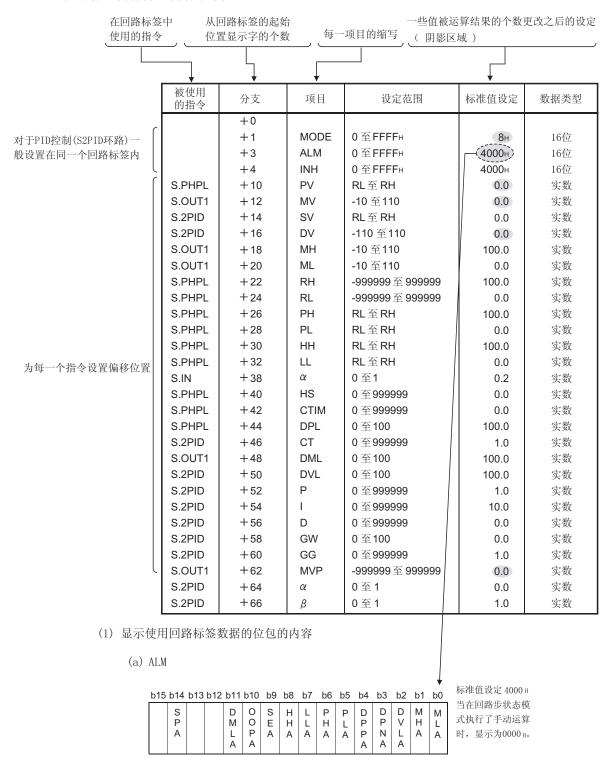
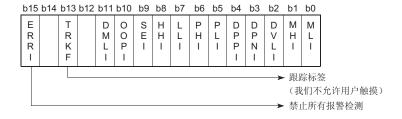


表 3.1 ALM 详细列表


S: 系统存储

U:	用户	设置
----	----	----

名称	缩写	描述	标签建立条件
停止报警	SPA	1. 显示回路停止状态。改变回路模式至手动。为输出值(BW)和报警信号 执行停止报警处理。	U
输出变化率限制报警	DMLA	为输入数据执行变化率限制器并且输出变化率报警(输出变化上限值/控制值)	S
输出公开报警	OOPA	当运算输出信号为断开等情况时,显示其已经变化至公开状态	S
传感器报警	SEA	传感器出错报警	S
报警高高值	ННА	检查过程设备上限的上限值,并且当测定量高于上限值将输出一个报警。	S
报警低低值	LLA	检查过程设备下限的下限值,并且当测定量低于下限值将输出一个报警。	S
报警高值	PHA	检查测定量的上限值,并且当测定量高于上限值时,输出一个报警。	S
报警低值	PLA	检查测定量的下限值,并且当测定量低于下限值时输出一个报警。	S
正向变化率报警	DPPA	如果变化率高于向上的变化率范围,输出一个报警	S
反向变化率报警	DPNA	如果变化率低于向下的变化率范围,输出一个报警	S
偏差放大报警	DVLA	执行出错检查,结束后输出一个报警。另外,出错检查发现偏差完全小 于警告值时,按照警告值来减少设定值,这样就能解除偏差放大报警。	S
输出高值报警	MHA	通过高/低值限制器执行检查,如果限制器结果比输入高值要大,将输出一个报警。	S
输出低值报警	MLA	通过高/低值限制器执行检查,如果限制器结果比输入低值要小,将输出一个报警。	S

(b) INH

禁止每一个项目的报警检测,被 INH 禁止的报警将不被检测。(INH 的位 0 至 11 对应于 ALM 的位 0 至 11)

(c) MODE

在连接到操作站,可编程控制器,主计算机,机旁操作屏之类的系统中,本过程控制指令 有下列运算模式可以满足下列在这些系统中的运算。

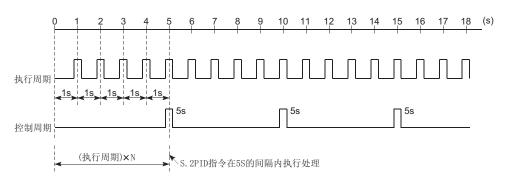
b	15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
						С	С	С	С	С	С	Α	М	L	L	L
						S	M	С	Α	M	Α	U	Α	С	С	С
						V	V	В	В	В	S	Т	Ν	С	Α	M

MODE 让其中一个的 1 位为标签 1。

运算模式	描述	应用
MAN	● OPS 的手动运算	从操作站执行监视和控制
(手动)	● SV 和 MV 能被设定	
AUT	● 自动运算	
(自动)	● SV 能被设置	
	● MV 不能被设置	
CAS	● 级联运算	
(级联)	● SV 和 MV 不能被设置	
CMV	● 从本计算机自动 MV 设定	能够执行本计算机的回路运算并且在操作站上
(计算机 MV)		
CSV	● 本计算机自动 SV 设定	
(计算机 SV)		
CMB	● 当本计算机异常时手动操作备份	在被本计算机控制的回路中, 当计算机发生故
(计算机手动)		障时,通过预定的操作站提供备份。
CAB	● 当本计算机异常时自动运算备份	
(计算机自动)		
CCB	● 当本计算机异常时级联运算备份	
(计算机级联备份)		
LCM	● 本地手动运算	从操作站执行监视和控制
(本地操作)		
LCA	● 本地自动运算	
(本地自动运算)		
LCC	● 本地级联运算	
(本地级联)		

3 过程控制指令所用的数据及如何指定数据	MELSEC-Q
ᄸᆠᆿ	
备忘录	

4 如何执行过程控制指令

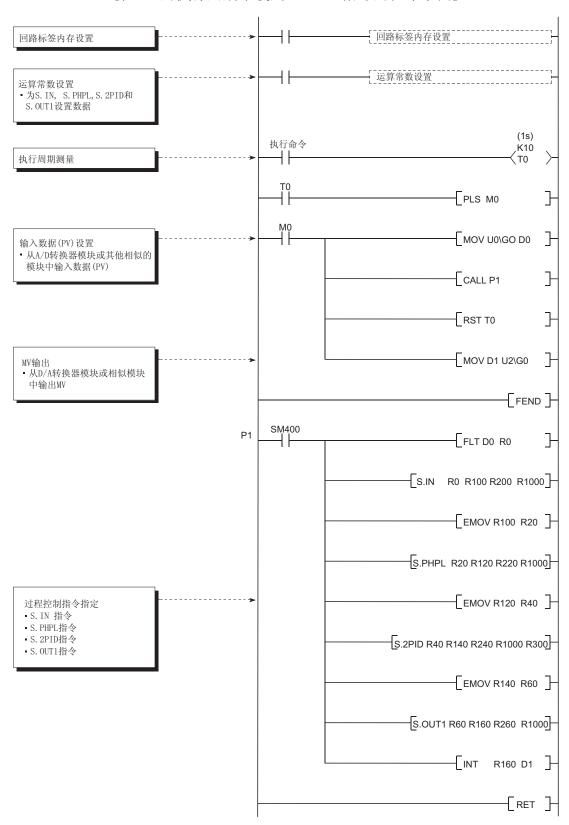

4.1 执行周期和控制周期

(1) 执行周期

- (a) 执行周期是过程控制指令执行的时间段。
- (b)以下为在每个执行周期内执行过程控制指令的方法。
 - 1) 使用定时器的方法 定时器是用来测量执行周期并且当定时器时间到时,执行过程控制指令。
 - 2) 使用中断(响应)程序的方法 中断(响应)程序中 128 至 131 的任何一个均在每个执行周期中运行。
 - 3) 使用固定扫描周期执行程序的方法 固定扫描周期执行程序在每一个执行周期中都运行。
- (c) 在特殊寄存器(SD1500, SD1501)中指定在过程控制指令中使用的执行周期的值为一个实数。

(2) 控制周期

- (a) 控制周期是例如 S. 2PID (2 个自由度的 PID) 的指令被执行时 PID 控制所在的时间段。 对于控制周期,指定执行周期的积分倍数。 在每一个执行周期中 S. 2PID 或相似指令将计数执行周期,并且在到达指定的控制周期时启动 PID 运算。
- (b) 在回路标签内存(见 3. 3. 1 节) 中指定 S. 2PID 或相似指令使用的控制周期。 S. 2PID 或相似指令使用在回路标签内存中指定的控制周期的值来执行 PID 控制。
 - 例) 当在 2 个自由度的 PID 控制的 1s 的时间段上执行监视时并且在 5s 的时间段执行 PID 控制时。



要点

当控制周期设定到执行周期的积分倍数时,在每一个执行周期内都能执行测量值检 查之类的监视。

4.2 程序的概念

[在 1s 的执行周期中使用 S. 2PID 指令的程序示例]

5

5 执行条件切换及其功能

- 5.1 执行条件切换
- 5.1.1 回路运行/停止

如果不是可编程控制器而是其他回路元件如检测器或者运算终端出现故障,每个回路均能被运行或停止,从而执行相应回路的维护。

通过报警检测的"SPA"位来运行/停止相应的回路。

- (1) 在回路 STOP 时的基本运算
 - (a)输出状态保持(S. 2PID 指令为输出=0)
 - (b)报警号检测(过程报警)
 - (c)将运算模式转为 MAN。

5 - 1 5 - 1

5

5.2 功能

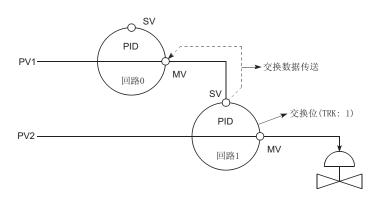
5.2.1 跟踪功能

跟踪功能包括"无冲击功能"和"输出限制器处理功能"。

(1) 无冲击功能

当从自动模式切换到手动模式并且持续控制 MV 输出时,无冲击功能阻止操作值(MV)输出步进改变。

(2) 输出限制器处理功能


输出限制器处理功能通过在自动模式中的 PID 运算限制操作值 (MV) 的高值和低值。这种输出限制器处理功能仅在自动模式中有效并且不能为手动数据执行。另外,当参数跟踪功能执行的有效性被设置为无效时,在自动模式中输出限制器处理功能将不会执行。

5.2.2 级联回路跟踪

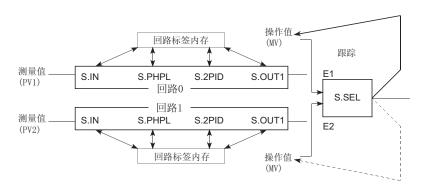
包含级联回路的过程控制回路将主回路(回路 0)的操作值(MV)作为二级回路(回路 1)的设定值(SV)。通过执行跟踪,可以使得在二级回路(回路 1)的操作模式改变时,防止设定值(SV)的突然变化。

(1) 级联 PID 回路跟踪处理在下图显示:

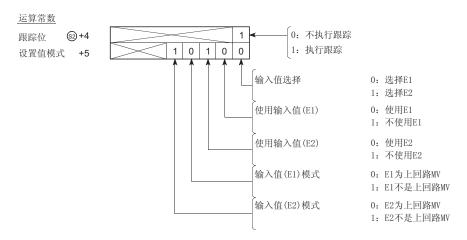
[处理概念图]

- (a) 在级联运算中, 回路 0 的操作值(MV)被传送到回路 1 的设定值(SV)中去。
- (b) 如果级联运算没有被执行,回路1的设定值(SV)将被传送至回路0的操作值(MV)中去。 (跟踪到被源指定为回路1设定值(SV)的输入终端)

(2) 使用下列设定来执行跟踪。


(当操作模式切换到 CAS, CSV 或 CCB 之外的模式时,跟踪被执行。)对于 2 个自由度的 PID(S. 2PID),设置下列运算常数项目来指定跟踪。

设定项目		设置
跟踪位(TRK)		1(跟踪被执行)
设定值模式(SVPTN)	设定值模式	0(设定值是上回路 MV。)
及是值模式(SVFIN)	设定值被使用	0(E2 被使用)


5.2.3 回路选择器跟踪

在下列条件下执行跟踪

- 操作模式为 MAN, CMB, CMV 和 LCM 中的任何一个并且跟踪位(TRK)为 1。
- 当操作模式是 AUT, CAS, CAB, CCB, CSV, LCA 和 LCC 中的任何一个。 跟踪位 (TRK) 为 1 并且 BB 的 BB1 为 1

例)当 S. SEL 指令使用输入值 E1 并且 E1 使用上位回路 (回路 0) MV,S. SEL 指令的 MV 被传送 到回路 0 的 MV 中去。执行跟踪的设定显示如下:

5 执行条件切换和功能	MELSEC-G
备忘录	

6

6 指令列表

6.1 如何阅读指令列表图

过程控制指令在很大程度上被分为 I/O 控制指令、控制运算指令、补偿运算指令、算术运算指令、比较运算指令和自整定指令。

See for Instruction Number of Category Symbol Processing Details Descript Symbols Basic Steps ion I/O control Conducts the input data (PV) instruction Upper/lower limit check, input - S.IN S1 D1 S2 D2 -7 S.IN limiter processing, engineering 8- 1 value conversion, and digital filter processing. Calculates the MV (0 to 100%) from the input data (MV), processes the upper and lower S.OUT1 S.OUT1 S1 D1 S2 D2 8 8-6 limit and Change rate limiter processing, and conducts output rçion 1) 2) 3) 4) 5) 6)

表 6.1 如何阅读指令列表

解释

- 1) 通过运用区分指令
- 2) 显示被程序使用的指令符号
- 3) 显示在环路中使用的符号图表

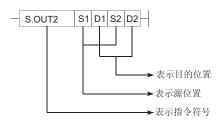


图6.1 电路图中的符号

目标:表示运算后数据的目标源:在运算之前存储数据

- 4) 显示每一个指令的处理内容。
- 5) 显示每一个指令的步数。关于步数的有关信息,参见2.2.7节。
- 6) 显示每一个指令的解释页。

6.2 功能

6.2.1 I/0 控制指令

表 6.2 I/0 控制指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
I/0 控 制指令	S. IN	- S.IN S1 D1 S2 D2 -	执行输入数据(PV)高/低值检查, 输入限制器处理,工程值反转换, 和数字滤波器处理。	7	8-1
	S. OUT1	- S.OUT1 S1 D1 S2 D2 -	从输入数据(MV)中计算 MV(0~100%)处理高低值并且执行输 出转换处理。	8	8-6
	S. 0UT2	- S.OUT2 S1 D1 S2 D2 -	从输入数据(MV)中执行变化率,高 /低限值制器和输出转换处理。	8	8-12
	S. MOUT	- S.MOUT S1 D1 S2 D2 -	读取环路标签内存的 MV 并且执行 输出转换和报警清除处理。	8	8-17
	S. DUTY	- S.DUTY S1 D1 S2 D2 -	在给定周期中按照输入数据 (0~100%)的比率变化 ON/OFF 率并 且输出结果。	8	8-21
	S. BC	- S.BC S1 D1 S2 D2	一旦当输入数据达到设定值时用设 定值比较输入数据和输出位数据。	7	8-28
	S. PSUM	- S.PSUM S1 D1 S2 D2	求输入脉冲信号的积分并且输出结 果。	8	8-32

6

6.2.2 控制运算指令

表 6.3 控制运算指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
控制运 算指令	S. PID	- S.PID S1 D1 S2 D2 S3 -	执行测定量微分型(不完全微分)PID运算。执行SV设定处理、 跟踪处理、增益(Kp)运算处理、 PID运算和偏差检测。	9	9-1
	S. 2PID	- S.2PID S1 D1 S2 D2 S3 -	执行 2 个自由度 PID 运算(不完全 微分) 执行 SV 设定处理,跟踪处理,增 益(Kp)运算处理,2 个自由度 PID 运算和偏差检测。	9	9–9
	S. PIDP	- S.PIDP S1 D1 S2 D2 S3 -	执行位置型 PID 运算。 执行 SV 设定处理,跟踪处理,增 益 (Kp) 运算处理,PID 运算, 偏差 检测和运算模式判断。 按照结果,执行变化率,高/低值 限制器和输出转换或执行报警清 除处理和输出转换。	9	9-17
	S. SPI	- S.SPI S1 D1 S2 D2 S3 -	在运算时间和保持时间之间判断。如果是运算时间,那么执行SV设定处理,跟踪处理,增益(Kp)运算处理,SPI运算和偏差检测。	9	9-26
	S. IPD	- S.IPD S1 D1 S2 D2 S3 -	执行 I-PD 运算。 执行 SV 设定处理,跟踪处理,增 益(Kp)运算处理,IPD 运算和偏差 检测。	9	9-33
	S. BPI	- S.BPI S1 D1 S2 D2 S3 -	执行混合 PI 运算。 执行 SV 设定处理,跟踪处理,获 得 Kp 运算处理,BPI 运算和偏差 检测	9	9-41
	S. R	- S.R S1 D1 S2 D2 S3	执行工程值转换,跟踪处理,变 化率限制器和在输入数据上的速 率运算。	8	9-48
	S. PHPL	S.PHPL S1 D1 S2 D2	通过 S. IN 执行 PV 输出的高/低限制值的检测。	8	9-53
	S. LLAG	- S.LLAG S1 D1 S2 D2	为输入数据执行超前-滞后补偿并 且输出运算结果。	8	9-59

表 6.3 控制运算指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
控制运 算指令	S. I	- S.I S1 D1 S2 D2 -	在输入数据上执行积分运算并且 输出运算结果。	7	9–61
	S. D	S.D S1 D1 S2 D2	在输入数据上执行微分运算并且 输出运算结果。	7	9-63
	S. DED	- S.DED S1 D1 S2 D2 -	通过指定的死区时间延迟输入数 据并且输出结果。	8	9-65
	S. HS	- S.HS S1 D1 S2 D2 -	在输入数据中输出最大值。	7	9-68
	S. LS	- S.LS S1 D1 S2 D2 -	在输入数据中输出最小值。	7	9-70
	S. MID	- S.MID S1 D1 S2 D2	在输入的数据中,输出在最大值 和最小值之间的中间值。	8	9-72
	S. AVE	S.AVE S1 D1 S2 D2	计算并且输出输入数据的均值。	8	9-75
	S. LIMT	- S.LIMT S1 D1 S2 D2 -	用滯后限制输出值。	8	9-77
	S. VLMT1	- S.VLMT1 S1 D1 S2 D2	限制输出值的变化速度。	9	9-79
	S. VLMT2	- S.VLMT2 S1 D1 S2 D2	限制输出值的变化速度。	9	9-81
	S. ONF2	- S.ONF2 S1 D1 S2 D2 S3	执行 2 位 0N/0FF 控制。 执行 SV 设定处理, 跟踪处理, MV 补偿, MV 输出和 2 位的 0N/0FF 控 制。	9	9-83
	S. ONF3	- S.ONF3 S1 D1 S2 D2 S3	执行 3 位 0N/0FF 控制。 执行 SV 设定处理, 跟踪处理。MV 补尝, MV 输出和 3 位的 0N/0FF 控 制。	9	9-89
	S. DBND	- S.DBND S1 D1 S2 D2 -	提供一个死区并且执行输出处 理。	8	9-95
	S. PGS	- S.PGS S1 D1 S2 D2 -	按照 SV 和 MV 模式提供一种控制 输出	8	9-97
	S. SEL	- S.SEL S1 D1 S2 D2 S3	在自动模式下,由选择信号选择 的输入数据被输出或在手动模式 下,回环标签内存的 MV 被输出。	9	9-102
	S. BUMP	- S.BUMP S1 D1 S2 D2	当模式选择信号从手动切换至自 动时,将输出值从输出控制值逐 步带近到输出设定值。	8	9-108
	S. AMR	- S.AMR S1 D1 S2 D2	按照固定比率增加或减少输出 值。	8	9-110

6.2.3 补偿运算指令

表 6.4 补偿运算指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
补偿运 算指令	S. FG	- S.FG S1 D1 S2 D2 -	输出指定了输入数据的函数发生 器模式产生的值。	7	10-1
	S. IFG	- S.IFG S1 D1 S2 D2	输出指定了输入数据的反函数发 生器模式产生的值。	8	10-3
	S. FLT	- S.FLT S1 D1 S2 D2	输出在指定数据收集间隔采样的 数据 n 片的平均值。	8	10-5
	S. SUM	- S.SUM S1 D1 S2 D2 -	对输入数据求积分并且输出结 果。	8	10-8
	S. TPC	- S.TPC S1 D1 S2 D2 -	在对输入数据进行了温度/压力补 偿后输出。	8	10-10
	S. ENG	- S.ENG S1 D1 S2 D2	变换输入数据为工程值。	8	10-12
	S. IENG	- S.IENG S1 D1 S2 D2 -	反向变换工程值为输入值并且输 出结果。	8	10-14

6.2.4 算术运算指令

表 6.5 算术运算指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
算术运 算指令	1 3. ADD 3. ADD 3. DT 3. DT 3. ADD 3.		将输入数据乘以系数后相加	8	11-1
3F.10 4	S. SUB	- S.SUB S1 D1 S2 D2 -	输入数据乘以系数后相减。	8	11-3
	S. MUL	- S.MUL S1 D1 S2 D2 -	以输入数据乘以各自的系数后相 乘。	8	11-5
	S. DIV	- S.DIV S1 D1 S2 D2	输入数据相除。	8	11-7
	S. SQR	- S.SQR S1 D1 S2 D2 -	输出为输入数据的开方(√)。	8	11-9
	S. ABS	- S.ABS S1 D1 S2 D2 -	输出为输入数据的绝对值。	8	11-11

6.2.5 比较运算指令

表 6.6 比较运算指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
比较运 算指令	S.>	- S.> S1 D1 S2 D2 -	比较输入数据并且输出比较的结 果。	7	12-1
	S. <	- S. < S1 D1 S2 D2	比较输入数据并且输出比较的结 果。	7	12-3
	S. =	- S. = S1 D1 S2 D2	比较输入数据并且输出比较的结 果。	7	12-5
	S.>=	- S.>= S1 D1 S2 D2	比较输入数据并且输出比较的结 果。	7	12-7
	s. <=	- S. <= S1 D1 S2 D2	比较输入数据并且输出比较的结 果。	7	12-9

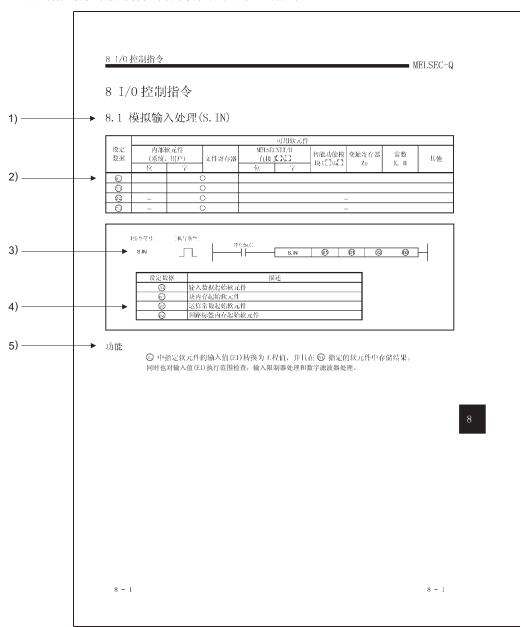
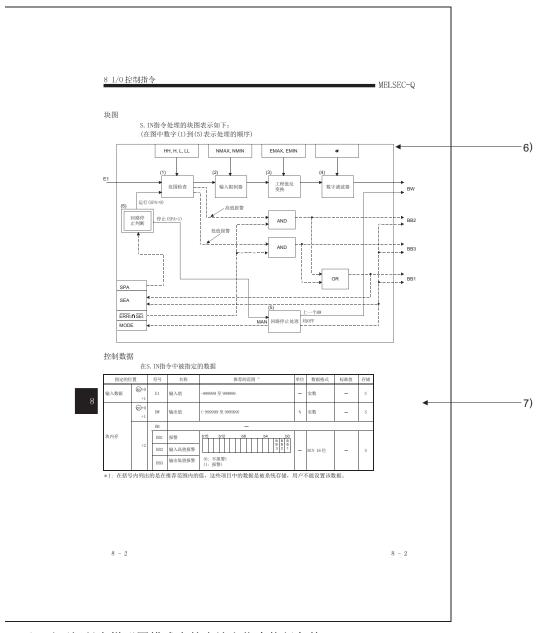

6.2.6 自整定指令

表 6.7 自整定指令

种类	指令符号	符号	处理细节	基本步数	详细资 料参见
自整定指令	S. AT1	- S.AT1 S1 D1 S2 D2 D3	执行自整定并且设置 PID 常量的 初始设定。	9	13-4

7 如何阅读指令

下列格式将用来解释如何阅读在后面列出的指令


- 1) 在指令概要中解释项目号
- 2) 在可以使用给指令的软元件中加上〇 能被使用的软元件用法分类显示如下:

软元件分类	(系统	 文件寄存器	MELSECNET/H 直接 J []\[]		智能功能模 块 U []\G []	变址寄存 器 Z []	常数*1	其他*1
可用软元件*3		R, ZR	位 J []\X J []\Y J []\SB	字 J[]\W J[]\SW	U []/G []	Z	十六进制 常数	P, I, J, U, DX, DY, N, BL, TR, BL\S, V

*1: 能够被设定的软元件列在常数和其他栏中。

*2: FX和FY只能和位数据一起使用,FD只能和字数据一起使用。

*3: 关于各软元件的说明,请参阅所使用的QCPU用户手册(功能解说/程序基础篇)。

3) 以下解释在梯形图模式中的表达和指令执行条件。

执行条件	正常执行	在开启的时候执行	在开启的时候执行一次	在关闭的时候执行一次
显示解释页的号码	无记录		无记录	无记录

- 4) 解释指令的设定数据。
- 5) 显示被执行指令功能。
- 6) 显示指令的处理顺序。
- 7)列出指令中被指定的数据 在存储区域的 S 和 U 显示如下
 - S:被系统存储
 - U:被用户设置

8 1/0 控制指令

■ MELSEC-Q

8) -→ 处理内容

(1) 范围检查

(a) 对输入值(E1) 执行范围检查 如果输入值(E1) 超过高/低值,将会输出一个报警。

范围检查	条件	范围检查结果(报警输出)				
36 biblio	SE H.	BB2	BB3	BB1, SEA		
	EI ≧ IH	1 *1		1 4		
高值检查	E1 ≦ H	0	_	0		
	H < E1 < HH	終值	_	终值		
	EL≦ I.I.		1 "	1 **		
低值检查	Et ≧ L		0	0		
	LL < E1 < L		终值	终值		

*1: "很警检测禁止(IMO中的 SEL或 ERRI 设置为 F 时,因为报警被禁止,SEA BB1, BB2 和 BB3 显示 为 0

(b) 终值保持处理

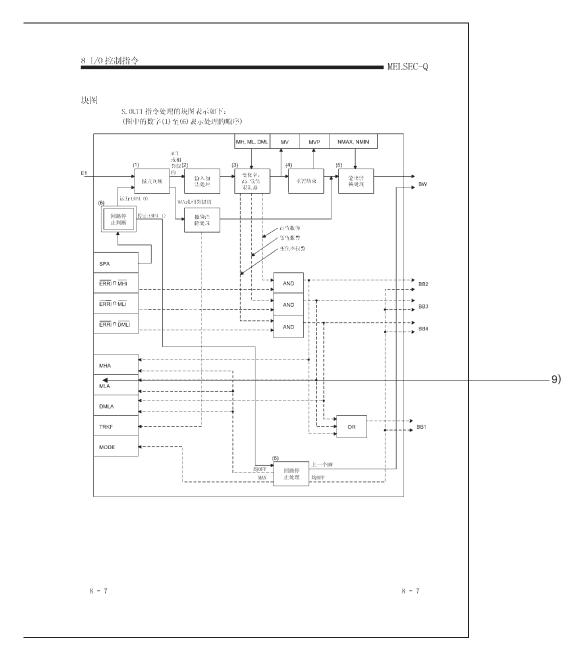
等產額關發資中出稅范围超出財 (BB1 - 1),按照 SM1500 是 0N 还是 0FF 來判断运算是否保持不变或者 S. IN 指令将会结束。 1)当 SM1500 是 0FF 时 (不是保持模式),如果出现范围超出 (B81 - 1) 的情况,将执行" (2)

- | (15)

 - BW 保留终值。
 在BB 中设置出错信息。

(2) 输入限制器处理

对输入值(E1)进行高/低值限制器设定(E1)。


条件	结果(T1)
E1 ≥ NMAX	NMAX
E1 ≥ ZMLZ	ZMIN
MIN < E1 < MAX	E1

8 - 4

8 - 4

8) 解释指令的每一个处理。

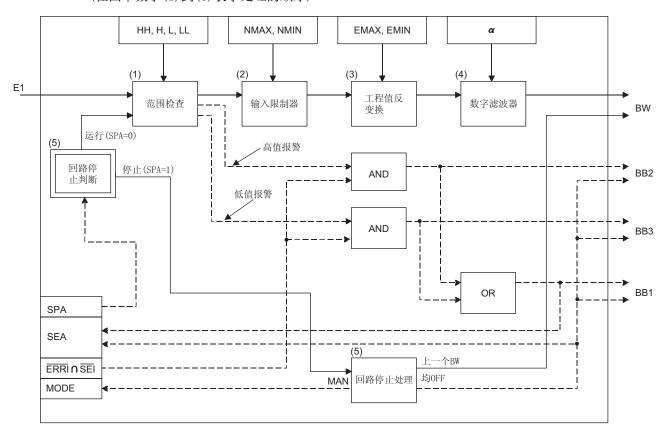
7 - 3 7 - 3

9) 显示出错发生的条件和出错号。 对于非以上描述的出错,请参考 QCPU(Q 模式)/QnACPU 编程手册(公共指令篇)

8 I/0 控制指令

8.1 模拟输入处理(S. IN)

		可用软元件									
设定 数据	内部软元件 (系统,用户)		(1) 文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其他		
	位	字		位	字	好 (にょ)(にょ	ZII	Ν, П			
§ 1	_					-	_				
(D1)	1					-	<u> </u>				
<u>\$2</u>	ı		0		_						
D2			0			-	_				


功能

⑤ 中指定软元件的输入值(E1)转换为工程值,并且在 ⑥ 指定的软元件中存储结果。同时也对输入值(E1)执行范围检查,输入限制器处理和数字滤波器处理。

8

块图

S. IN 指令处理的块图表示如下: (在图中数字(1)到(5)表示处理的顺序)

控制数据

在 S. IN 指令中被指定的数据

指定的位	置	符号	名称	推荐的范围 *1		数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
		BB		-				
块内存		BB1	报警	b15 b12 b8 b4 b0 B B B B B				
	+2	BB2	输入高值报警	3 2 1	_	BIN 16位	_	S
		BB3	输入低值报警	(0: 不报警) (1: 报警)				

*1: 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

R

指定位	:置	符号	名称	推荐范围 *1	单位	数据格式	标准值	存储
	\$2+0 +1	EMAX	工程反变换高 值	-999999 至 999999	%	实数	100.0	U
	+2 +3	EMIN	工程反变换低 值	-999999 至 999999	%	实数	0.0	U
	+4 +5	NMAX	输入高值	-999999 至 999999	_	实数	100.0	U
运算常数	+6 +7	NMIN	输入低值	-999999 至 999999	_	实数	0.0	U
是并市奴	+8 +9	НН	高值范围出错 发生	-999999 至 999999	_	实数	110.0	U
	+10 +11	Н	高值范围出错 返回	-999999 至 999999	_	实数	100.0	U
	+12 +13	L	低值范围出错 返回	-999999 至 999999	_	实数	0.0	U
	+14 +15	LL	低值范围出错 发生	-999999 至 999999	_	实数	-10.0	U
	(51) +1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0		BIN 16 位	8н	S/U
回路标签内存*2	+3	ALM	报警检测	0至 FFFFH b15 b12 b8 b4 b0 FP R E R R R R R R R R R R R R R R R R R	_	BIN 16 位	4000н	S/U
	+4	INH	报警检测禁止	0至 FFFFH b15 b12 b8 b4 b0 E R R I I I I I I I I I I I I I I I I I	_	BIN 16 位	4000н	S/U
	+38 +39	α	滤波器系数	0至1	_	实数	0. 2	U

^{*1:} 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

(2) 执行周期(△T)

将 SD1500 和 SD1501 中的执行周期设置为实数。

^{*2:} 回路标签内存和回路标签过去值内存总共占了 128 个字(详细资料请参考 3.3.1 节)

处理内容

(1) 范围检查

(a) 对输入值(E1) 执行范围检查

如果输入值(E1)超过高/低值,将会输出一个报警。

范围检查	条件	范围检查结果(报警输出)				
化四位且	米 丁	BB2	BB3	BB1, SEA		
	E1 ≧ HH	1 *1	_	1 *1		
高值检查	E1 ≦ H	0	_	0		
	H < E1 < HH	终值	_	终值		
	E1 ≦ LL	_	1 *1	1 *1		
低值检查	E1 ≧ L	_	0	0		
	LL < E1 < L	_	终值	终值		

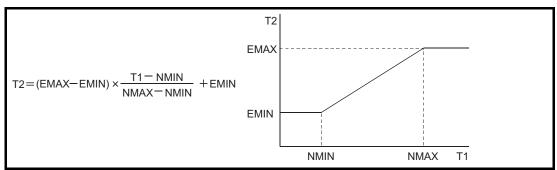
^{*1:} 当报警检测禁止(INH)中的 SEI 或 ERRI 设置为 1 时,因为报警被禁止,SEA, BB1, BB2 和 BB3 显示 为 0

(b) 终值保持处理

当在范围检查中出现范围超出时 (BB1 = 1),按照 SM1500 是 ON 还是 OFF 来判断运算是否保持不变或者 S. IN 指令将会结束。

- 1) 当 SM1500 是 0FF 时 (不是保持模式),如果出现范围超出 (BB1 = 1) 的情况,将执行"(2) 输入限制器处理"。
- 2) 当 SM1500 是 ON 时(在保持模式中),如果出现范围超出(BB1 = 1),将会执行下列处理并且结束 S. IN 指令。
 - BW 保留终值。
 - 在BB中设置出错信息。

(2) 输入限制器处理


对输入值(E1)进行高/低值限制器设定(E1)。

条件	结果(T1)
E1 ≧ NMAX	NMAX
E1 ≧ NMIN	NMIN
NMIN < E1 < NMAX	E1

错误代码: 4100

(3) 工程值反变换

输入限制器的结果(T1)按照下列表达式从工程值反变换。

(4) 数字滤波器

按照下列表达式,输入数据(E1)经过数字过滤。

BW = T2 + α × (上一个BW 值 - T2)

(5) 回路停止处理

- (a) 报警检测(ALM)的 SPA 中的设置 1 选择回路停止。 回路停止执行下列处理并且结束 S. IN 指令。
 - 1) BW 保留终值
 - 2) 报警检测 (ALM) 的 SEA 变为 0。
 - 3) 运算模式变为 MAN。
 - 4) BB 的 BB1 至 BB3 变为 0。
- (b)报警检测(ALM)的 SPA中的设定 0选择回路运行。 回路运行执行"(1)范围检查"。

出错

● 当出现运算出错时

8.2 带模式切换的输出处理 1(S. OUT1)

		可用软元件								
设定 数据	内部软元件 (系统,用户)		文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字		位字		失 ∪∟」∖∪∟」	ZII	Λ, П		
§ 1	-	()		=					
© 1	-	()			=	=			
<u>\$2</u>	-	0		-						
(D2)	-	0				=	_			


功能

通过 ⑤ 指定元件的输入值(E1 = \triangle MV)执行输入加法处理来计算输出值(MV),并且在 ⑥ 指定的 软元件中存储结果。

同时也对计算出的输出值(MV)执行变化率,高/低值限制器,积分饱和和输出转换处理。

块图

S. 0UT1 指令处理的块图表示如下: (图中的数字(1)至(6)表示处理的顺序)

控制数据

(1) S. OUT1 指令处理的块图表示如下:


指定的任	立置	符号	名称	推荐的范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值 (△ MV)	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 999999)	_	实数		S
块内存	+2	BB BB1 BB2 BB3 BB4	报警 输出高值报警 输出低值报警 输出变化率报 警		_	BIN 16 位	_	S
运算常数	\$2+0 +1	NMAX	输出转换高值	-999999 至 999999	_	实数	100.0	U
是并市奴	+2 +3	NMIN	输出转换低值	-999999 至 999999	_	实数	0.0	U
	1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C C C C A M V A A M A U A C C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C C A M M A U A C C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C A M M A U A C C C C C A M M A U A C C C C C A M M A U A C C C C C A M M A U A C C C C C C C C C C A M M A U A C C C C C C C C C C C C C C C C C	_	BIN 16 位	8н	S/U
回路标签内	+3	ALM	报警检测	0至FFFFH b15 b12 b8 b4 b0 S D M P M L A A A A A A A A A A A A A A A A A A	_	BIN 16位	4000н	S/U
存*2	+4	INH	报警检测禁止	0至FFFFH b15 b12 b8 b4 b0 E T D M M M H L H L H L H L H L H L H L H L H	_	BIN 16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U

*1: 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

*2: 回路标签内存和回路标签过去值内存总共占了 128 个字(详细资料请参考 3.3.1 节)。

指定的位	置	符号	名称	推荐的范围 *1	单位	数据格式	标准值	存储
	©2+18 +19	МН	输出高值	-10 至 110	%	实数	100.0	U
	+20 +21	ML	输出低值	-10 至 110	%	实数	0.0	U
回路标签内存*2	+48 +49	DML	输出变化率限 制值	0至100	%	实数	100. 0	U
	+54 +55	I	积分常数	0 至 999999	S	实数	10. 0	U
	+62 +63	MVP	内部运算值 MV	(-999999 至 999999)	%	实数	0.0	S
回路标签过 去值内存*2 *3	©2+116	-	-	系统用工作区域。	-	_	_	S

- *1: 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。不能由用户进行数据设置。
- *2: 回路标签内存和回路标签过去值内存总共占了128个字(详细资料请参考3.3.1节)。
- *3: 回路标签过去值内存的用途如下表所示:

如果从初始状态开始控制,需要通过顺控程序进行数据清除。

(2) 执行周期(△T)

将 SD1500 和 SD1501 中的执行周期设置为实数。

处理内容

(1) 模式判断

运算模式(MODE)决定是否执行下列处理中的两者中的一个。

- (a) 当运算模式 (MODE) 是 MAN, CMB, CMV 和 LCM (报警清除处理) 中的任何一个。
 - 1) 报警检测(ALM)中的 MHA, MLA 和 DMLA 变为 0。
 - 2) 将报警检测 2 的 MHA2 和 MLA2 置为 0。
 - 3) BB 的 BB1 至 BB4 变为 0。
 - 4) 报警检测禁止(INH)的跟踪标签(TRKF)变为1。
 - 5) 执行"(5)输出转换处理"并且结束 S. OUT1 指令。
- (b) 当运算模式 (MODE) 是 AUT, CAB, CAS, CCB, CSV, LCA 和 LCC 中的任何一个, 执行"(2)输入加法处理"。

然而,当报警检测 (ALM) 中的 SEA 为 1 并且 SM1501 为 0N (保持状态) 时,BB1 至 BB4 变为 0 并且结束 S. 0UT1 指令。

(2) 输入加法处理

在输入值(E1 = \triangle MV)的基础上计算临时 MV(T)。

- (a) 当报警检测禁止(INH)的跟踪标签(TRKF)为1时,执行下列处理。
 - 1) 在 MV 内部运算值 (MVP) 中存储操作值 (MV)。
 - 2) 将输入值(E1)变成 0(△MV = 0)。
 - 3) 将报警检测禁止(INH)的跟踪标签(TRKF)变为 0。
 - 4) 用下列公式式计算临时 MV(T)。

$$T = E1 + MVP$$

 $MVP = T$

(b) 当报警检测禁止(INH)的跟踪标签(TRKF)为0时,用下列表达式来计算临时MV(T)。

$$T = E1 + MVP$$

 $MVP = T$

(3) 变化率, 高/低值限制器

当临时 MV(T)和操作值(MV)不同时,执行变化率和高/低值限制器检查,在限制器处理之后输出数据和报警。

(a) 变化率限制器执行下列运算并且输出运算结果至 BB4 和 DMLA。

条件	BB4, DMLA	结果(T1)
$ T - MV \leq DML$	0	T
(T - MV) > DML	1 *1	MV + DML
(T - MV) < - DML	1 *1	MV - DML

*1: 当报警检测禁止(INH)中的 DMLI 或 ERRI 设置为 1 时,因为报警被禁止,所以 DMLA 和 BB4 显示为 0。

(b) 通过上/下限限制器执行下列运算,并将其结果输出至 BB2、BB3、MHA、MLA、MHA2 和 MLA2 中。

条件	BB3、MLA、MLA2	BB2、MHA、MHA2	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 *3	0	ML
ML ≦ T1 ≦ MH	0	0	T1

- *2: 当报警检测禁止(INH)中的 MHI 或 ERRI 设置为 1 时,因为报警被禁止,所以 MHA 和 BB2 显示为 0。 但是,即使报警检测禁止(INH)中的 MHI 或 ERRI 为 1,MHA2 也保持为 1 不变。
- *3: 当报警检测禁止(INH)中的 MLI 或 ERRI 设置为 1 时,因为报警被禁止,所以 MLA 和 BB3 显示为 0。 但是,即使报警检测禁止(INH)中的 MLI 或 ERRI 为 1, MLA2 也保持为 1 不变。

(4) 积分饱和

如果操作值(MV)超过上/下限值,则执行下列运算使其恢复至上/下限值,并在偏差反转时,能够及时响应。

然而, 当积分常数(T1)是0时, 不执行积分饱和处理。

条件	运算公式
当 T1>MH、 △T ≦ 1	$MVP = \frac{\Delta T}{T_I} (MH - T) + T$
当 T1 <mh、δt Tι</mh、δt 	$MVP = \frac{\Delta T}{T_I}(ML - T) + T$

错误代码: 4100

(5) 输出转换处理

在输出转换中, 按照下列公式计算输出值。

$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

(6) 回路停止处理

- (a)报警检测(ALM)的 SPA 设定为 1 选择回路停止。 回路停止执行下列处理并结束 S. OUT1 指令。
 - 1) BW 保留终值。
 - 2) 报警检测 (ALM) 的 DMLA, MHA 和 MLA 变为 0。
 - 3) 将报警检测 2(ALM2) 中的 MHA2 和 MLA2 置为 0。
 - 4) 运算模式 (MODE) 变为 MAN。
 - 5) BB 的 BB1 至 BB4 变为 0。
- (b)报警检测(ALM)中的 SPA 设定为 0,选择回路运行。 回路运行执行"(1)模式判断"。

(7) 保持处理

用来指定输出值是否被 S. 0UT1 指令保持,该指令是在回路停止处理中当出现感应器出错(被 S. IN 指令检测)时被指定的。

当出现感应器报警时,用 SM1501 来选择是否操作值(MV)被保持。

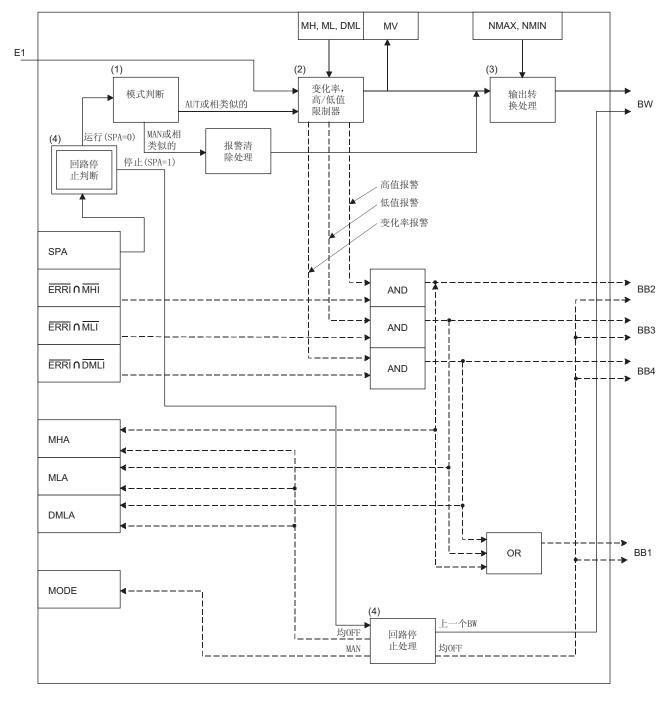
- SM1501 = OFF: 操作值(MV)将不会被保持。
- SM1501 = ON: 操作值(MV)将被保持。

出错

● 当出现运算出错时

8.3 带模式切换的的输出处理 2(S. OUT2)

	r									
	可用软元件									
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 直接 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字		位	字	5/ UL 1/UL 1	<i>L</i> 11	Ν, 11		
S 1	_	0		_						
© 1	-	0		_						
<u>\$2</u>	_	(_						
(D2)	_	0				=	=			



功能

⑤ 中指定元件的输入值(E1 = MV)转换为输出,并且在 ⑥ 指定的软元件中存储结果。 也可同时对输出值执行变化率,高/低值限制器和输出转换处理。

块图

S. OUT2 指令的处理块图表示如下: (图中数字(1)至(4)表示处理的顺序)

控制数据

(1) 在 S. OUT2 指令中指定的数据

指定的位置		符号	名称	推荐的范围 *1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 999999)		实数	_	S
块内存	+2	BB BB1 BB2 BB3 BB4	报警 输出高值报警 输出低值报警 输出变化率报	b15 b12 b8 b4 b0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	_	BIN 16 位	_	S
Note that No. 101	\$2+0 +1	NMAX	输出转换高值	(1: 报警) -999999 至 999999	_	实数	100.0	U
运算常数	+2 +3	NMIN	输出转换低值	-999999 至 999999	=	实数	0.0	U
回路标签内存**	© +1	MODE	运算模式	0 至 FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0至FFFF _H b15 b12 b8 b4 b0 P M M M M A A A SPA DMLA, MHA, MLA 0:回路运行 (0: 不报警) 1:回路停止 (1: 报警)	_	BIN 16 位	4000н	S/U
	+4	INH	报警检测禁止	0至FFFFH b15 b12 b8 b4 b0 E N N N N N N N N N N N N N N N N N N N	_	BIN 16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U
	+18 +19	MH	输出高值	-10 至 110	%	实数	100. 0	U
	+20 +21	ML	输出低值	-10 至 110	%	实数	0.0	U
	+48 +49	DML	输出变化率限 制值	0至100 6日由的新根具並系統方は 用白石能识異法斯根	%	实数	100. 0	U

^{*1:} 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

^{*2:} 回路标签内存和回路标签过去值内存总共占了 128 个字(详细资料请参考 3. 3. 1 节)。

(2) 执行周期(△T)

将 SD1500 和 SD1501 中的执行周期设置为实数。

处理内容

(1) 模式判断

运算模式(MODE)决定是否执行下列处理中的两者中的一个。

- (a) 当运算模式(MODE) 是 MAN, CMB, CMV 和 LCM(报警清除处理)中的任何一个。
 - 1) 报警检测 (ALM) 中的 MHA, MLA 和 DMLA 变为 0。
 - 2) BB 的 BB1 至 BB4 变为 0。
 - 3) 执行"(3)输出转换处理"并且结束 S. OUT2 指令。
- (b) 当运算模式 (MODE) 是 AUT, CAB, CAS, CCB, CSV, LCA 和 LCC 中的任何一个, 执行"(2)变化率, 高/低值限制器"。

然而, 当报警检测 (ALM) 中的 SEA 为 1 并且 SM1501 是 0N(保持状态) 时,BB1 到 BB4 变为 0 并且结束 S. 0UT2 指令。

(2) 变化率,高/低值限制器

当临时 MV(T)和操作值(MV)不同时,执行变化率和高/低值限制器检查,在限制器处理之后输出数据和报警。

(a) 变化率限制器执行下列运算并且输出运算结果至 BB4 和 DMLA。

条件	BB4, DMLA	结果(T1)		
E1 - MV ≦ DML	0	E1		
(E1 - MV) > DML	1 *1	MV + DML		
(E1 - MV) < - DML	1 *1	MV - DML		

* 1: 当报警检测禁止 (INH) 中的 DMLI 或 ERRI 设置为 1 时,因为报警被禁止,所以 DMLA 和 BB4 显示为 0。

(b) 高/低值限制器执行下列运算并且输出运算结果至 BB2, BB3, MHA 和 MLA

条件	BB3, MLA	BB2, MHA	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 *3	0	ML
$ML \leq T1 \leq MH$	0	0	T1

*2: 当报警检测禁止(INH)中的 MHI 或 ERRI 设置为 1 时,因为报警被禁止,所以 MHA 和 BB2 显示为 0。 *3: 当报警检测禁止(INH)中的 MLI 或 ERRI 设置为 1 时,因为报警被禁止,所以 MLA 和 BB3 显示为 0。

(3) 输出转换处理

在输出转换中,按照下列公式计算输出值。

 $BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$

错误代码: 4100

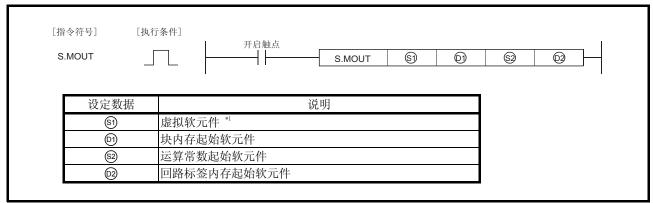
(4) 回路停止处理

- (a) 报警检测 (ALM) 的 SPA 中的设定 1 选择回路停止。 回路停止执行下列操作并且结束 S. OUT2 指令
 - 1) BW 保留终值。
 - 2) 报警检测 (ALM) 中的 DMLA, MHA 和 MLA 变为 0
 - 3) 运算模式(MODE) 变为 MAN。
 - 4) BB 的 BB1 至 BB4 变为 0。
- (b)报警检测(ALM)的 SPA 中的设定 0 选择回路运行。 回路运行执行"(1)模式判断"。

(5) 保持处理

用来指定输出值是否被 S. OUT2 指令保持,该指令是在回路停止处理中出现感应器出错(被 S. IN 指令检测)时被指定的。

当出现感应器报警时,使用SM1501来选择是否保持操作值(MV)。


- SM1501 = OFF: 操作值(MV)不保持。
- SM1501 = ON: 操作值(MV)保持。

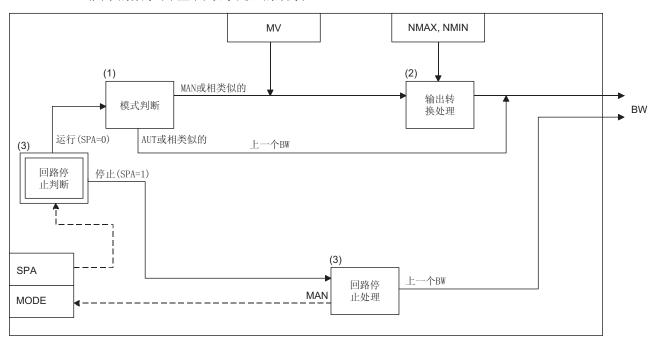
出错

● 当出现运算出错时

8.4 手动输出(S. MOUT)

	ſ				$\neg \Box H . \neg H$					
	可用软元件									
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 直接 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字		位	字	火 063/063	ZII	Ν, 11		
S1	_	0		_						
© 1	=	0		_						
<u>\$2</u>	-	(_						
©2	_	0				=	=			

*1: 特殊寄存器 SD1506 可以指定为虚拟软元件。


功能

将 ② 中指定的操作值(MV)转换为输出,并且在 ④ 指定的软元件中存储结果。

8 I/0 控制指令

块图

S. MOUT 指令处理的块图显示如下: (图中的数字(1)至(3)表示处理的顺序)

控制数据

(1) 被 S. MOUT 指令指定的数据

指定的信	立置	符号	名称	推荐的范围 *1	单位	数据格式	标准值	存储
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	_	实数		S
运算常数	\$2+0 +1	NMAX	输出转换高值	-999999 至 999999	=	实数	100.0	U
色异市奴	+2 +3	NMIN	输出转换低值	-999999 至 999999	1	实数	0.0	U
回路标签内 存 * ²	@+1	MODE	运算模式	0 至 FFFFH b15	l	BIN 16位	8н	S/U
	+3	ALM	报警检测	0 至 FFFFH b15 b12 b8 b4 b0 S P A	-	BIN 16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	U

* 1: 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

* 2: 回路标签内存和回路标签过去值内存总共占了128个字(详细资料请参考3.3.1节)。

(2) 执行周期(△T)

将 SD1500 和 SD1501 中的在执行周期设置为实数。

处理内容

(1) 模式判断

运算模式(MODE)决定是否执行下列处理中的两者中的一个。

- (a) 当运算模式 (MODE) 是 MAN, CMB, CMV 和 LCM 中的任何一个。
 - 1) 操作值(MV)作为输出值(BW)。
 - 2) 执行"(2)输出转换处理"。
- (b) 当运算模式 (MODE) 是 AUT, CAB, CAS, CCB, CSV, LCA 或 LCC 中的任何一个时,BW 保留终值。

(2) 输出转换处理

在输出转换中,按照下列公式计算输出值。

$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

错误代码: 4100

- (3) 回路停止处理
 - (a) 报警检测(ALM)的 SPA 中的设定 1 选择回路停止。 回路停止执行下列操作并且结束 S. MOUT 指令。
 - 1) BW 保留终值。
 - 2) 运算模式 (MODE) 变为 MAN。
 - (b)报警检测(ALM)的 SPA 中的设定 0 选择回路运行。 回路运行执行"(1)模式判断"。

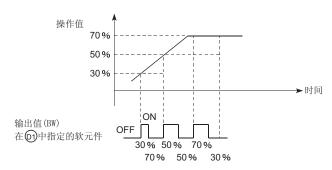
出错

● 当出现运行出错

8.5 时间比率(S. DUTY)

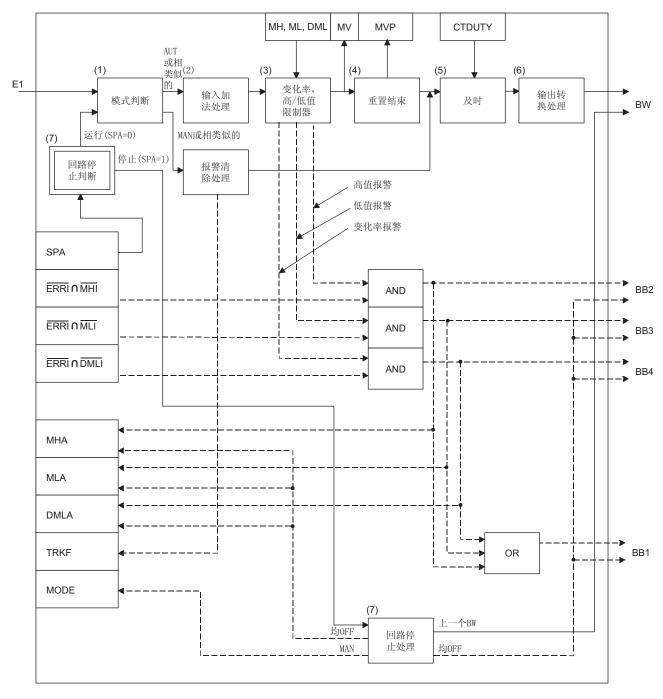
		可用软元件									
设定 数据		内部软元件 (系统,用户)					MELSECNET/H 直接 JC 3/C 3 块 UC 3/C		变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	好 いっぱい	ZII	к, п			
§ 1	-	()	_							
© 1	-	()			=	=				
<u>\$2</u>	_	- 0			_						
(D2)	_	()			=	=				

*1: 特殊寄存器 SD1506 能被指定为虚拟软元件。


功能

通过从 ⑤ 指定软元件的输入值(E1 = \triangle MV)中执行输入加法运算来计算操作值(MV)。按照操作值(MV)的比率变化 \bigcirc 0N/0FF 率,并存储在 ⑥ 指定的软元件。

ON/OFF 时间是建立在控制输出周期指定的时间(CTDUTY)为 100%的假设基础上的一个值。


在每一个执行周期中, ON/OFF 时间都会变化。

也同时执行计算出的操作值(MV)的变化率,高/低值限制器和积分饱和。

块图

S. DUTY 指令的处理块图表示如下: (图中的数字(1)至(7)表示处理的顺序。)

控制数据

(1) 被 S. DUTY 指令指定的数据

指定的信	立置	符号	名称	推荐的范围 *1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入数据 (△ MV)	-999999 至 999999	%	实数	_	U
块内存	©) +0	BW BW1	输出位	0: OFF) (1: ON)	_	BIN 16 位	_	S
灰的竹	+1	BB BB1 BB2 BB3 BB4	报警 输出高值报警 输出低值报警 输出变化率报	b15 b12 b8 b4 b0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	_	BIN 16 位	_	S
	©2 +1	MODE	运算模式	0至FFFF ^H b15 b12 b8 b4 b0 CCCCCCCAMLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	_	BIN 16 位	8н	S/U
回路标签内	+3	ALM	报警检测	0至 FFFF ^H b15 b12 b8 b4 b0 P M M H L A A SPA DMLA, MHA, MLA 0: 回路运行 (0: 不报警) 1: 回路停止 (1: 报警)	_	BIN 16位	4000н	S/U
存**	+4	INH	报警检测禁止	0至FFFF ^B b15 b12 b8 b4 b0 E T D D M M M M L R K L L L L L L L L L L L L L L L L L L	_	BIN 16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U

^{*1:} 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

^{*2:} 回路标签内存和回路标签过去值内存总共占了128个字(详细资料请参考3.3.1节)。

指定的位	置	符号	名称	推荐的范围 *1	单位	数据格式	标准值	存储
	©2+18 +19	MH	输出高值	-10 至 110	%	实数	100.0	U
	+20 +21	ML	输出低值	-10 至 110	%	实数	0.0	U
回路标签内 存*2	+48 +49	DML	输出变化率限 制值	0 至 100	%	实数	100. 0	U
	+54 +55	I	积分常数	0 至 999999	S	实数	10.0	U
	+62 +63	MVP	内部运算值 MV	(-999999 至 999999)	%	实数	0. 0	S
	+68 +69	CTDUTY	控制输出周期	0 至 999999 注意 CTDUTY ≤ 32767	S	实数	1. 0	U
回路标签过 去值内存*2*3	©+116							
	:	_	_	被系统当作工作区域使用	=	_	_	S
	+121							

- *1: 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。
- *2: 回路标签内存和回路标签过去值内存总共占了128个字(详细资料请参考章节3.3.1)。
- *3: 回路标签过去值内存的运用表示如下:

指定的位置	说明
	近
©2+116	报警检测 2 (ALM2)
	b15 b12 b8 b4 b0 M M L H A A A 2 2 2
+118	控制输出周期计数器初始预设标签
+119	控制输出周期计数器
+120	输出计数器
+121	输出 ON 计数器

当控制是从初始状态中开始的,那么数据必须被顺控程序清除。

(2) 执行周期(△T)

将 SD1500 和 SD1501 的执行周期设定为实数。

处理内容

(1) 模式判断

运算模式(MODE)决定是否执行下列处理中的任何一个。

- (a) 当运算模式 (MODE) 是 MAN, CMB, CMV 和 LCM 中的任何一个(报警清除处理)。
 - 1) 报警检测 (ALM) 中的 MHA, MLA 和 DMLA 变为 0。
 - 2) 将报警检测 2(ALM2) 中的 MHA2 和 MLA2 置为 0。
 - 3) BB 的 BB1 至 BB4 变为 0。
 - 4) 报警检测禁止(INH)的跟踪标签(TRKF)变为1。
 - 5) 执行"(5)输出 ON 时间转换处理"。
- (b) 当运算模式 (MODE) 是 AUT, CAB, CAS, CCB, CSV, LCA 和 LCC 中的任何一个时, 执行"(2)输入加 法处理"。

然而,当报警检测 (ALM) 的 SEA 是 1 并且 SM1501 是 0N (保持状态),BB1 至 BB4 变为 0 并且 结束 S. DUTY 指令。

(2) 输出加法处理

在输入值(E1 = \triangle MV)的基础上计算出临时 MV(T)。

- (a) 当报警检测禁止(INH)的跟踪标签(TRKF)为1时,执行下列处理。
 - 1) 操作值(MV)存储在 MV 内部运算值(MVP)中。
 - 2) 输出值(E1) 变化为 0。(△MV = 0)
 - 3)报警检测禁止的跟踪标签(TRKF)变为 0。
 - 4) 按照下列表达式计算临时 MV(T)。

$$T = E1 + MVP$$
$$MVP = T$$

(b) 当报警检测禁止的跟踪标签(TRKF)是0时,按照下列表达表达式计算临时MV(T)。

T = E1 + MVPMVP = T

(3) 变化率,高/低值限制器

在临时 MV(T) 和输出值 (MV) 之间不同处执行变化率和高/低值检查,并且在限制器处理之后输出数据和报警。

(a) 变化率限制器执行下列运算并且输出运算结果至 BB4 和 DMLA。

条件	BB4, DMLA	结果(T1)
T - MT ≦ DML	0	Т
(T - MV) > DML	1 *1	MV + DML
(T - MV) < - DML	1 *1	MV - DML

*1: 当报警检测禁止(INH)中的 DMLI 或 ERRI 设置为 1 时,因为报警被禁止,DMLA 和 BB4 显示为 0。

(b) 通过上/下限限制器执行下列运算,并将其结果输出至BB2、BB3、MHA、MLA、MHA2及MLA2中。

条件	BB3、MLA、MLA2	BB2、MHA、MHA2	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 *3	0	ML
$ML \leq T1 \leq MH$	0	0	T1

*2: 当报警检测禁止(INH)中的 MHI 或 ERRI 设置为 1 时,因为报警被禁止,MHA 和 BB2 显示为 0。 但是,即使报警检测禁止(INH)中的 MHI 或 ERRI 为 1 时,MHA2 也保持为 1 不变。

*3: 当报警检测禁止(INH)中的 MLI 或 ERRI 设置为 1 时,因为报警被禁止,MLA 和 BB3 显示为 0。 但是,即使报警检测禁止(INH)中的 MLI 或 ERRI 为 1 时,MLA2 也保持为 1 不变。

(4) 积分饱和

如果操作值(MV)超出了高/低限值,执行下列运算来复位为高/低限值,并且当偏差反转时能有及时响应。

然而, 当积分常数(T1)为0, 不执行积分饱和处理。

条件	运算表达式
当 T1>MH、 ΔT ≤ 1	$MVP = \frac{\Delta T}{T_I} (MH - T) + T$
$\stackrel{\text{def}}{=}$ T1 <ml、 <math="">\frac{\Delta T}{T_1} \le 1</ml、>	$MVP = \frac{\Delta T}{T_I} (ML - T) + T$

8 - 26 8 - 26

错误代码: 4100

(5) 输出 ON 时间转换处理

(a) 当到达控制输出周期(CTDUTY)时,按照下列表达式计算输出 ON 计数器。在此时,输出计数器被清除(为 0)

输出
$$0$$
N计数器 = $\frac{\text{CTDUTY}}{\Delta T} \times \text{MV} \times \frac{1}{100}$

输出 ON 计数器将分数四舍五入。

(b) 当未到达控制输出周期(CTDUTY),输出计数器增加1并且执行"(6)输出转换处理"。

(6) 输出转换处理

在输出转换处理中, 执行下列处理。

条件	BW
输出计数器 <输出 ON 计数器	1 (ON)
输出计数器 ≧ 输出 0N 计数器	0 (0FF)

(7) 回路停止处理

(a)报警检测(ALM)中 SPA 的设定 1 选择回路停止。

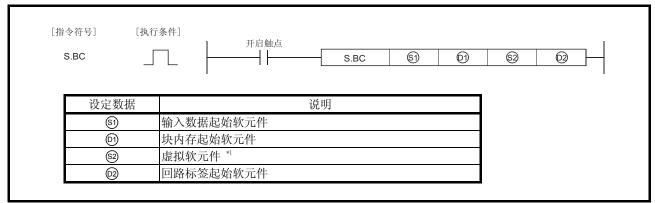
回路停止执行下列操作并且结束 S. DUTY 指令。

- 1) BW 是最后一个 ON/OFF 率的输出。
- 2) 报警检测(ALM)中的 DMLA, MHA 和 MLA 变成 0。
- 3) 将报警检测 2 (ALM2) 中的 MHA2 和 MLA2 置为 0。
- 4) 运算模式 (MODE) 变为 MAN。
- 5) BB 的 BB1 至 BB4 变为 0。
- (b)报警检测(ALM)的 SPA 中设定 0 选择回路运行。 回路运行执行"(1)模式判断"。

(8) 保持处理

用来指定输出值是否被 S. DUTY 指令保持,该指令是在回路停止处理中出现感应器出错(被 S. IN 指令检测)时被指定的。

当出现报警器出错时,使用 SM1501 来选择是否保持操作值(MV)。


- SM1501 = OFF:操作值不保持。
- SM1501 = ON:操作值(MV)保持。

出错

● 当出现运算出错时

8.6 选组计数器(S.BC)

		可用软元件									
设定 数据		内部软元件 (系统,用户)					MELSECNET/H 直接 JC 3/C 3 块 UC 3/C		变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	好 いっぱい	ZII	к, п			
§ 1	-	()	_							
© 1	-	()			=	=				
<u>\$2</u>	_	- 0			_						
(D2)	_	()			=	=				

*1: 特殊寄存器 SD1506 能被指定为虚拟软元件。

功能

一旦输入值(E1)达到设定值 1(SV1)/设定值 2(SV2)时,比较输入值和设定值 1(SV1)/设定值 2(SV2),并且输出位数据。

也可同时执行对输入值(E1)的高值检查处理,变化率检查处理和输出转换处理。

控制数据

(1) 被 S. BC 指令指定的数据

指定的位	立置	符号	名称	推荐的范围 *1	单位	数据格式	数据格式	存储
输入数据	\$1+0 +1	E1	输入值	0至2147483647	_	BIN 32 位	_	U
		BW		_				
	©1)+()	BW1	输出 1	b15 b12 b8 b4 b0 B B W W W 2 1	_	BIN 16 位		S
块内存		BW2	输出 2	(0: OFF) (1: ON)		DIN 10 <u>D.</u>		5
201313		BB		_		T		
		BB1 BB2	报警 高值报警	b15 b12 b8 b4 b0 B B B B B B B B B B B B B B B B B B				
	+1	BB3	变化率报警	(0: 不报警) (1: 报警)	_	BIN 16位	_	S
	© 2+3	ALM	报警检测	0至 FFFFH b15 b12 b8 b4 b0 PHA, DPPA (0: 不报警) (1: 报警)		BIN 16 位	4000н	S/U
回路标签内 存 *2	+4	INH	报警检测禁止	0 至 FFFFH b15 b12 b8 b4 b0 E R R H P P D H I P P D D C 能够报警 1:报警禁止		BIN 16 位	4000н	S/U
	+14 +15	SV1	设定值1	0 至 2147483647	_	BIN 32 位	0	U
	+16 +17	SV2	设定值 2	0至2147483647	_	BIN 32位	0	U
	+26 +27	PH	高值报警设定 值	0 至 2147483647	=	BIN 32位	0	U
	+42 +43	CTIM	变化率报警检 查时间	0 至 999999 注意 CTIM ≤ 32767	s	实数	0.0	U
	+44 +45	DPL	变化率报警值	0至2147483647	_	BIN 32位	0	U

^{*1:} 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

^{*2:} 回路标签内存和回路标签过去值内存总共占了128个字(详细资料请参考3.3.1节)。

指定	勺位置	符号	名称	推荐的范围 *1	单位	数据格式	标准值	存储
回路标签: 去值内存		_	_	被系统作为工作区域使用	_	_	_	S
	+127							

- *1: 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。
- *2: 回路标签内存和回路标签过去值内存总共占了128个字(详细资料请参考3.3.1节)。
- *3: 回路标签过去值内存的运用表示如下:

指定的位置	说明
©2 +124	变化率监视计数器初始预设标签
+125	变化率监视计数器
+126	v
+127	An-m

当控制是从初始状态中开始的,那么数据必须被顺控程序清除。

(2) 执行周期(△T)

将 SD1500 和 SD1501 的执行周期设定为实数。

处理内容

(1) 高值检查处理

在高值检查处理中,执行下列运算并且在BB2和PHA中存储运算结果。

条件	BB2, PHA
E1 > PH	1 *1
其他	0

*1: 当报警检测(INH)中的 PHI 或 ERRI 设置为 1 时,因为报警被禁止,PHA 和 BB2 显示为 0。

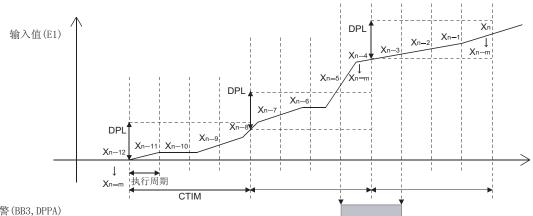
错误代码: 4100

(2) 变化率检查处理

在被回路标签内存指定的变化率报警检查时间(CTIM)中,执行变化率报警检查,变化率报警检 查在每一个执行周期(△T)中用变化率报警值(DPL)

条件	BB3, DPPA
$(X_n - X_{n-m}) \ge DPL$	1 *2
其他	0

*2: 当报警检测禁止的 DPPI 或 ERRI 为 1 时,因为报警被禁止,DPPA 和 BB3 变为 0。


变化率报警计数器(m)按照下列表达式计算。

变化率报警计数器(m) =
$$\frac{\text{CTIM}}{\Delta T}$$

变化率报警计数器(m)在1至m的范围内变化。

然而, 当变化率报警计数器(m) = 0 时, 不执行任何处理。

例) 当变化率报警计数器(m) = 4 时,执行的处理表示如下:

变化率报警(BB3, DPPA)

(3) 输出转换处理

在输出转换处理中,执行下列处理,并且在BW1和BW2中存储运算结果。

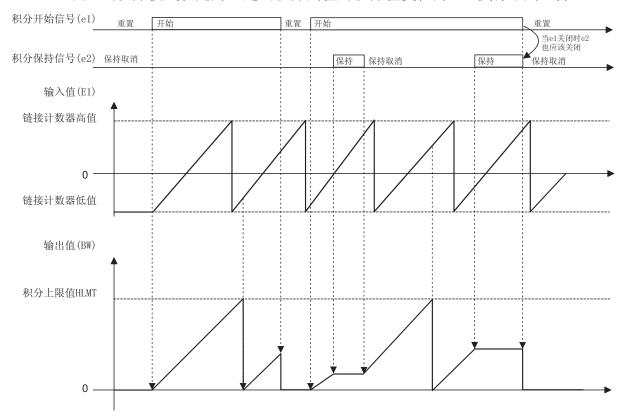
条件	BW1	BW2
E1 < 0	0	0
$0 \le E1 < SV1$	0	_
E1 ≧ SV1	1	_
$0 \le E1 < SV2$	_	0
E1 ≧ SV2	_	1

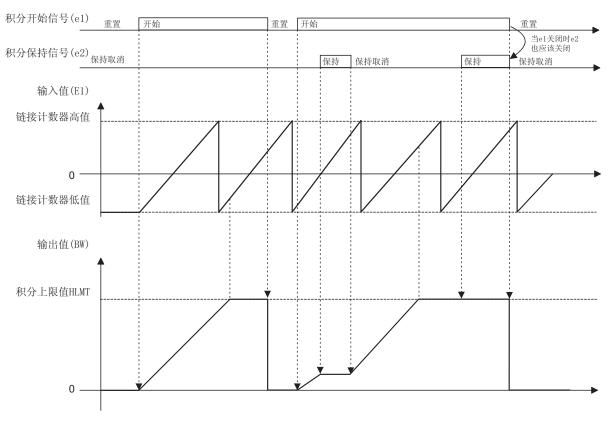
出错

● 当出现运算出错时

8 - 31 8 - 31

8.7 脉冲积分(S. PSUM)


					可用软元件					
设定 数据		次元件 用户)	文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字		位	字	好 ひこ 」 (ひこ)	ZII	Ν, П		
S 1	-	(0							
© 1	1	0		_						
<u>\$2</u>	1	0		-						
© 2	_	(-	_			


功能

对 ⑤ 指定的元件输入值(E1)求积分,并且在 ⑥ 指定的元件中存储结果。 当输出值超出了积分高值时,积分高值和积分模式能够用来选择积分值是复位为 0 还是保持高值。 积分开始信号和积分保持信号能够启动和中断输入值的积分。

(1) 当积分模式设定为"超出积分高值时积分值复位为0"执行下列运算。

(2) 当积分模式设定为"高值超出时,积分值保持为积分高值",执行下列操作。

控制数据

(1) 被 S. PSUM 指令指定的数据

指定的位置		符号	名称	推荐的范围 *1		数据格式	标准值	存储
	(S1)+0 +1	E1	输入值	使用 16 位或以上的链接计数器 ■ 16 位链接计数器 00000000 _H → 0000FFFF _H → 00000000 _H ■ 24 位链接计数器 00000000 _H → 00FFFFFF _H → 00000000 _H ■ 32 位链接计数器 00000000 _H → FFFFFFF _H → 00000000 _H 在每个指令执行时,设置 32767 (7FFF _H) 或更少作为脉冲增加。	脉冲	BIN 32 位	_	U
た) 粉 埕		е		_	•			
输入数据	+2	el	积分开始信号	b15 b12 b8 b4 b0 积分开始信号 0: 积分停止/重置 1: 积分开始 积分保持信号	_	BIN 16 位	_	U
		e2	积分保持信号	0: 积分保持取消 1: 积分保持				
	©1+0 +1	BW1	输出值 (整数部分)	(0 至 2147483647)	_	BIN 32 位	_	S
块内存	+2 +3	BW2	输出值 (分数部分)	(0 至 2147483647)	_	BIN 32 位	_	S
	<u>\$2</u> +0	W	每个脉冲的重量	1 至 999	_	BIN 16位	1	U
运算常数	+1	U	单位转换常数	1, 10, 100, 1000	_	BIN 16 位	1	U
心开市奴	+2 +3	1 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 至 2147483647		BIN 32 位	2147483647	U
	+4	SUMPTN	积分模式	0: 当积分高值(HILMT)超出时,复位为 0。 1: 当积分高值(HILMT)超出时,保持积分高值。	_	BIN 16位	0	U
回路标签	+10 +11	SUM1	积分值 (整数部分)	(0至2147483647)	_	BIN 32 位	0	S
内存 *2	+12 +13	SUM2	积分值 (小数部分)	(0至2147483647)	_	BIN 32 位	0	S

^{*1:} 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。

^{*2:} 回路标签内存和回路标签过去值内存总共占了128个字。(详细资料请参考3.3.1节)

指定的位置		符号	名称	推荐的范围*1	单位	数据格式	标准值	存储
回路标签过 去值内存	©2+116 +117	_	_	被系统作为工作区域使用		_	_	S

- *1: 在括号内列出的是在推荐范围内的值,这些项目中的数据是被系统存储,用户不能设置该数据。
- *2: 回路标签内存和回路标签过去值内存总共占了 128 个字。(详细资料请参考 3. 3. 1 节)
- *3: 回路标签过去值内存的运用表示如下:

指定的位置	说明
©2+116 +117	E1n-1(最后一个输入值)

当控制是从初始状态中开始的,那么数据必须被顺控程序清除。

处理内容

(1) 高值检查处理

在高值检查处理中,执行下列运算并且将运算结果输入到 BB2 和 PHA 中去。

e1	e2	输入值增加(T1)
0	0	_
0	1	_
1	0	E1 - E1 _{n-1}
1	1	_

(2) 积分值运算处理

在积分运算处理中,对输入值增量(T1)执行下列处理。

e1	e2	积分值(整数部分)(T2),积分值(小数部分)(T3)
0	0	T2 = 0
	Ŭ	T3 = 0
0	1	T2 = 0
U	1	$T3 = 0^{*1}$
	0	T4 = {(T1 × W)/U}<整数部分>的商
1		T5 = {(T1 × W)/U}<分数部分>的余数
1		T2 = SUM1 + T4 + [{(SUM2 + T5)/U}]<整数部分>的商
		T3 = {(SUM2 + T5)/U}<分数部分>的余数
1	1	T2 = SUM1
1	1	T3 = SUM2

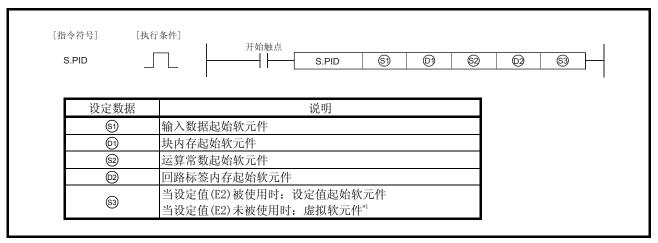
*1: 在积分停止/重置(e1 = 0)时,在积分累计取消(e2 = 0)的假设上执行处理。

错误代码: 4100

(3) 输出转换

在输出转换中,对积分值(T2,T3)执行下列处理。

SUMPTN	条件	BW1, SUM1	BW2, SUM2
0	T2 ≧ HILMT	BW1 = T2/HILMT 的余数 SUM1 = T2/HILMT 的余数	BW2 = T3 $SUM2 = T3$
U	其他	BW1 = T2 SUM1 = T2	BW2 = T3 $SUM2 = T3$
1	T2 ≧ HILMT	BW1 = HILMT SUM1 = HILMT	BW2 = 0 $SUM2 = 0$
1	其他	BW1 = T2 SUM1 = T2	BW2 = T3 SUM2 = T3


出错

● 当出现运算出错时

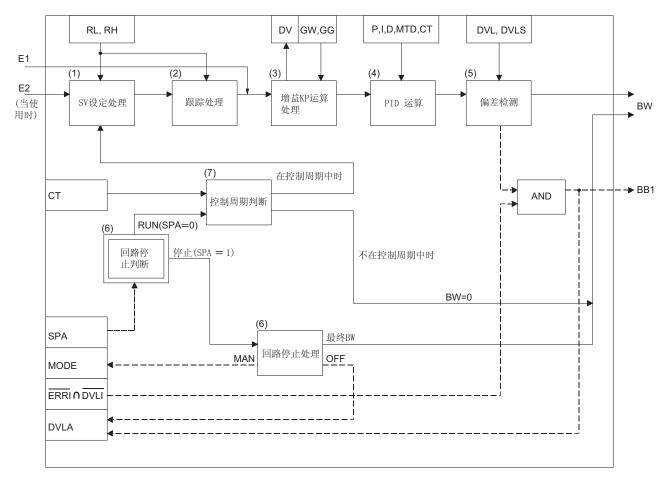
9 控制运算指令

9.1 基本 PID(S. PID)

	可用软元件								
设定 数据		次元件 用户)	文件寄存器	MELSEC 直接:	CNET/H JC 3\C 3	智能功能模	变址寄存器 Zn		其他
	位	字		位	字	犬 UL 」\UL 」	ZII	К, Н	
§ 1	-	0							
© 1	-	(_					
<u>\$2</u>	_	0		_					
D2	_	0		_					
§ 3	l					-	_		

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能


当达到指定控制周期时执行 PID 运算。 (PID 运算的对象可以是速度类型/测定量微分型 (不完全微分型)。)

亦可同时执行 SV 设定处理, 跟踪处理, 增益(Kp)运算处理和偏差检测处理。

9

结构图

S. PID 指令运算过程的结构框图如下图所示。 (图中(1)至(7)表示处理的顺序。)

9

控制数据

(1) S. PID 指令中的数据定义

指定位置	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数	_	U
	©1+0 +1	BW	输出值 (△ MV)	(-999999 至 999999)	_	实数	_	S
		BB		_				
块内存	+2	BB1	偏差放大报警	b15 b12 b8 b4 b0 B B B 1 1 (0: 无报警)	l	BIN 16 位	I	S
	\$2+0 +1	MTD	微分增益	0 至 999999	_	实数	8. 0	U
	+2 +3	DVLS	偏差放大报警 滞后	0至100	%	实数	2. 0	U
	+4	PN	运算模式	0: 反向运算 1: 正向运算	-	BIN 16 位	0	U
	+5	TRK	跟踪位	0: 禁止跟踪 1: 跟踪	1	BIN 16 位	0	U
运算常数	+6	SVPTN	设定值模式	0 至 3 b15 b12 b8 b4 b0 设定值模式n*3 设定值使用*2 0: E2是上环路MV 0: E2 被使用 1: E2次有被使用	_	BIN 16 位	3	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。
 - 用户不能设定该参数。
- *2: 无论设定值(E2)是否被使用都可指定。
- *3: 同设定值(E2), 无论上回路的操作值(MV)是否被使用都可指定。

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	©2+1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
回路标签 寄存器*2	+3	ALM	报警检测	0至FFFFH b15 b12 b8 b4 b0	_	BIN 16 位	4000н	S/U
	+4	INH	报警检测禁止	0 至 FFFF _H b15 b12 b8 b4 b0 E T D M M V H L I F D M M L I F D M M M R	_	BIN 16 位	4000н	S/U
	+14 +15	SV	设定值	RL 至 RH	_	实数	0.0	U
	+16 +17	DV	偏差	(-110至110)	%	实数	0.0	S
	+22 +23	RH	工程值上限	-999999 至 999999	=	实数	100.0	U
	+24 +25	RL	工程值下限	-999999 至 999999	_	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 CT ≤ 32767	S	实数	1.0	U
	+50 +51	DVL	偏差限制值	0至100	%	实数	100. 0	U
	+52 +53	Р	增益	0 至 999999	_	实数	1.0	U
	+54 +55	Ι	积分常数	0 至 999999	S	实数	10. 0	U
	+56 +57	D	微分常数	0 至 999999	S	实数	0.0	U
	+58 +59	GW	间隙宽度	0至100	%	实数	0.0	U

^{*1:}在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
回路标签 寄存器**	©+60 +61	GG	间隙增益	0至 999999	_	实数	1. 0	U
	+62 +63	MVP	MV 内部运算值	(-999999 至 999999)	%	实数	0.0	S
回路标签 过去值 寄存器* ² * ³	©+96 : +116	_	_	作为工作区域由系统使用	ĺ			S
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。
- *2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)
- *3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明
@+96	控制周期计数器初始化预置标志
+97	控制周期计数器
+102	B _{n-1} (上一个值)
+103	
+104	PVn(测定量)
+105	I Vn(例足里)
+106	PV _{n-1} (上一个测定量)
+107	11111(工、)例定里/
+108	PV _{n-2} (上一个测定量前的一个测定量)
+109	1112(工 例定重削的 例定重/
+110	DV _{n-1} (上一个偏差值)
+111	
+116	报警检测 2 (ALM2)
	b15 b12 b8 b4 b0
	M M L H A A A 2 2 2
	MHA2, MLA2 (0: 无报警) (1: 有报警)

当控制由初始状态开始时,数据必须由顺控程序清0。

*4: 当设定值模式 (SVPTN) 设为 "E2 被使用"时设定值 (E2) 有效。 当使用上回路的 MV 作为设定值 (E2) 时,指定设备使得在其中上回路的操作值 (MV) 可以设定 (偏移 + 12: MV)。 若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。

(特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

9 - 5 9 - 5

处理内容

(1) SV 设定处理

下述处理取决于运算模式(MODE)的设置。

- (a) 当运算模式 (MODE) 为 CAS, CCB 和 CSV 中的任一种时:
 - 1) 当设定值(E2)被指定时,工程值转换按下述等式执行,接下来执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当设定值(E2)未被指定时,即使工程值转换未在执行中"(2)跟踪处理"仍可执行。
- (b) 当运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 设定值(SV)按下列运算等式由工程值反变换计算SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当满足下列所有条件时, 执行跟踪处理:
 - 1) 运算常数的跟踪位(TRK)为1。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上回路的操作值(MV), 在上回路中的报警检测禁止(INH)的跟踪标志(TRKF)变为 1。

(3) 增益(Kp)运算处理

(a) 偏差(DV) 在下述条件下进行计算:

条件	运算等式
正向运算(PN = 1)	DV = E1 - SVn'
反向运算(PN = 0)	$DV = SV_{n'} - E1$

(b)输出增益(K)在下述条件下进行计算:

条件	运算等式
当 DV ≦ GW 时	K = GG
当 DV > GW 时	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) PID 运算

PID 运算按下述等式执行:

	项目	运算等式				
Bn	正向运算(PN = 1)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$				
	反向运算(PN = 0)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{-(PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D}\}$				
BW (△MV)		$K_P \times \{(DV_n - DV_{n-1}) + \frac{CT}{T_1} \times DV_n + B_n\}$				

K_P: K × 增益(P), M_D: 微分增益(MTD) T_I: 积分常数(I), T_D: 微分常数(D)

然而在下述情况下,需注意特殊处理的执行:

条	件	
QnPHCPU/QnPRHCPU(序列号的高5	QnPHCPU/QnPRHCPU(序列号的高5	处理
位是: 07031 或以前)	位是: 07032 或以后)	
有下列 1,2 情况之一时:		Bn = 0
1. 微分常数(D) = 0 (TD = 0)		(但是, 进行回路标签过去值内
2. 运算模式 (MODE) 为 MAN, LCM 和 CM	IV 任一种	存的设置。)
有下列1,2,3情况之一时:	有下列1、2、3情况之一时	
	1. 积分常数(I)=0 (T _I =0)	
2. 当 MHA 或 MLA 显示为 1 时	2. MHA2 或 MLA2 显示为 1 时	
$(MVP > MH)$ 和 $(\frac{CT}{T_I} \times DV_n > 0)$	$(MVP > MH) \coprod (\frac{CT}{T_I} \times DV_n > 0))$	$\frac{CT}{T_1} \times DV_n = 0$
3. 当 MHA 或 MLA 显示为 1 时	3. MHA2 或 MLA2 显示为 1 时	
$(MVP < ML)$ 和 $(\frac{CT}{T_l} \times DV_n < 0)$	$(MVP < ML = \underline{\mathbb{H}}(\frac{CT}{T_I} \times DV_n < 0)$	

(5) 偏差检测

在下列条件下执行偏差检测,检测结果输出至报警检测(ALM)的 DVLA 和偏差放大报警(BB1)的块内存。

条件	结果
DVL < DV	$DVLA = BB1 = 1^{*1}$
$(DVL - DVLS) < DV \le DVL$	DVLA =BB1 = 上一个值状态保持*1
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0

*1: 当报警检测禁止(INH)中的 DVLI 或 ERRI 被置 1 时,此时由于报警被禁止,DVLA 和 BB1 将显示 0。

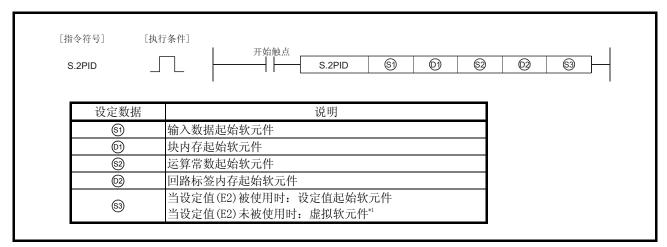
(6) 回路停止处理

- (a) 报警检测(ALM)中的 SPA 设为 1 则选择回路停止。 回路停止执行下列操作并终止 S. PID 指令:
 - 1) BW 变为 0。
 - 2) 报警检测(ALM)的 DVLA 变为 0。
 - 3) 运算模式 (MODE) 改为 MAN。
 - 4) BB的 BB1 变为 0。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(7)控制周期判断"。

错误代码: 4100

(7) 控制周期判断

- (a) 若指定控制周期未到达时,BW(ΔMV) 变为 0, S. PID 指令终止。
- (b) 当指定控制周期到达时, 执行"(1) SV 设定处理"。


错误

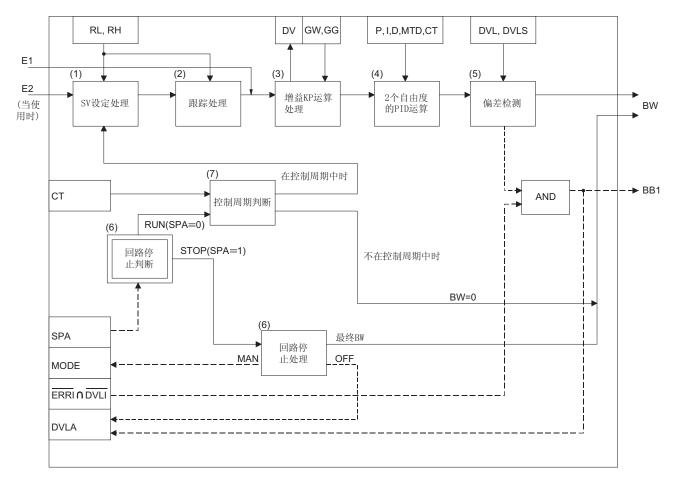
● 当运算错误发生时

9 - 8

9.2 2 自由度 PID 控制(S. 2PID)

		可用软元件										
设定 数据		次元件 , 用户)	文件寄存器			智能功能模	变址寄存器 Zn	常数 K, H	其他			
	位	字		位	字	 	ZII	Ν, 11				
§1)		(0		_							
61		()	_								
<u>\$2</u>	1	()	_								
D2	ı	(0		_							
§ 3		(0			=	=	•	•			

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。


功能

当指定控制周期到达时执行2个自由度PID运算。

亦可同时执行 SV 设定处理, 跟踪处理, 增益(Kp)运算处理和偏差检测处理。

结构图

S. 2PID 指令运算过程的结构框图如下图所示。 (图中(1)至(7)表示处理的顺序。)

控制数据

(1) S. 2PID 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数		U
	©1+0 +1	BW	输出值 (ΔMV)	(-999999 至 999999)	%	实数	_	S
		BB		_				
块内存	+2	BB1	偏差放大报警	b15 b12 b8 b4 b0 B B B B 1	_	BIN 16 位	_	S
	\$2+0 +1	MTD	微分增益	0至 999999	_	实数	8. 0	U
	+2 +3	DVLS	偏差放大 报警滞后	0至100	%	实数	2. 0	U
	+4	PN	运算模式	0: 反向运算 1: 正向运算		BIN 16 位	0	U
	+5	TRK	跟踪位	0: 禁止跟踪 1: 跟踪		BIN 16 位	0	U
运算常数	+6	SVPTN	设定值模式	0 至 3 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 b16 b17 b18 b18 b2 b2 b18 b18 b2 b18		BIN 16 位	3	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。
- *2: 无论设定值(E2)是否被使用都可指定。 *3: 同设定值(E2),无论上回路的操作值(MV)是否被使用都可指定。

9 - 11 9 - 11

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	© 2+1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
回路标签 内存 ^{*2}	+3	ALM	报警检测	0至FFFFH b15 b12 b8 b4 b0 SPA DVLA, MHA, MLA 0:回路RUN (0: 无报警) 1:回路STOP (1: 报警)	_	BIN 16 位	4000н	S/U
	+4	INH	报警检测禁止	0 至 FFFF _H b15 b12 b8 b4 b0 E T D M M M P L L L L L L L L L L L L L L L L		BIN 16 位	4000н	S/U
	+14 +15	SV	设定值	RL至RH	_	实数	0.0	U
	+16 +17	DV	偏差	(-110 至 110)	%	实数	0.0	S
	+22 +23	RH	工程值上限	-999999 至 999999	_	实数	100. 0	U
	+24 +25	RL	工程值下限	-999999 至 999999	=	实数	0.0	U
	+46 +47	СТ	控制周期	0 至 999999 注意 CT ≤ 32767	S	实数	1. 0	U
	+50 +51	DVL	偏差限制值	0至100	%	实数	100. 0	U
	+52 +53	Р	增益	0 至 999999	=	实数	1.0	U
	+54 +55	I	积分常数	0 至 999999	S	实数	10. 0	U
	+56 +57	D	微分常数	0 至 999999	S	实数	0.0	U
	+58 +59	GW	间隙宽度	0至100	%	实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
回路标签 寄存器**	©2+60 +61	GG	间隙增益	0 至 999999	_	实数	1. 0	U
	+62 +63	MVP	MV 内部 运算值	(-999999 至 999999)	%	实数	0.0	S
	+64 +65	α	2 个自由度参 数 α * ⁵	0至1	_	实数	0.0	U
	+66 +67	β	2 个自由度参 数 β *6	0至1	_	实数	1. 0	U
回路标签 过去值 寄存器* ^{2 *2}	+96 : +116	_	_	作为工作区域由系统使用	_	_	_	S
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。
- *2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)
- *3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明
©2+96	控制周期计数器初始化预置标志
+97	控制周期计数器
+102	B _{n-1} (上一个值)
+103	Dn-1 (上, 自且 <i>)</i>
+104	PVn(测定量)
+105	1111(例足里)
+106	PV _{n-1} (上一个测定量)
+107	THILE IMPERI
+108	PV _{n-2} (上一个测定量前的一个测定量)
+109	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+110	DV _{n-1} (上一个微分值)
+111	
+112 +113	DV _{n-2} (上一个微分值前的一个微分值)
+114 +115	D _{n-1} (上一个值)
+116	报警检测 2 (ALM2)
110	JK音位例 2 (ALM2)
	b15 b12 b8 b4 b0 M M H A A A 2 2 2 MHA2, MLA2 (0: 无报警) (1: 有报警)

此外,如果从初始状态开始控制,需要通过顺控程序进行数据清除。

*4: 当设定值模式(SVPTN)设为 "E2 被使用"时设定值(E2)有效。

当使用上回路的 MV 作为设定值(E2)时,指定设备使得在其中上回路的操作值(MV)可以设定(偏移 + 12: MV)。

若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。

(特殊寄存器 SD1506 可被指定为虚拟软元件。)

*5: 增大α会减小操作值相对于设定值改变而发生的变化。

(到达稳定需要一定时间。)

减小众会增大操作值相对于设定值改变而发生的变化。

然而由于补偿运算效果增强,振荡将会增大。

*6: 增大β会减弱设定值变化的微分效应。

减小β会增强设定值变化的微分效应。

(2) 执行周期(**∆**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

(1) SV 设定处理

下述处理取决于运算模式(MODE)的设置。

- (a) 当运算模式 (MODE) 为 CAS, CCB 和 CSV 中的任一种时:
 - 1) 当设定值(E2)被指定时,工程值转换按下述等式执行,接下来执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当设定值(E2)未被指定时,即使工程值转换未在执行中"(2)跟踪处理"仍可执行。
- (b) 当运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 设定值(SV) 按下列运算等式由工程值反变换计算 SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当满足下列所有条件时, 执行跟踪处理:
 - 1) 运算常数的跟踪位(TRK)为1。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上回路的操作值(MV), 在上回路中的报警检测禁止(INH)的跟踪标志(TRKF)变为 1。

(3) 增益(Kp)运算处理

(a) 偏差(DV) 在下述条件下进行计算:

条件	运算等式			
正向运算(PN = 1)	$DV = E1 - SV_n$			
反向运算(PN = 0)	$DV = SV_{n'} - E1$			

(b)输出增益(K)在下述条件下进行计算:

条件	运算等式
当 DV ≦ GW 时	K = GG
当 DV > GW 时	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) 2 个自由度 PID 运算

2个自由度 PID 运算按下述等式执行:

	项目	运算等式
Bn		$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (DV_n - 2DV_{n-1} + DV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$
Cn	正向运算(PN = 1)	PV _n — PV _{n-1}
Cn	反向运算(PN = 0)	— (PV _n — PV _{n-1})
D	正向运算(PN = 1)	$D_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{T_D} \}$
Dn	反向运算(PN = 0)	$D_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{T_D} \}$
BW (AMV)		$K_{P} \times \{ (1-\alpha) \times (D V_{n} - D V_{n-1}) + \frac{C T}{T_{I}} \times D V_{n} + (1-\beta) \times B_{n} + \alpha \times C_{n} + \beta \times D_{n} \}$

K_P: K × 增益(P), M_D: 微分增益(MTD) T_I: 积分常数(I), T_D: 微分常数(D)

但是, 在下述情况下将执行特殊处理, 应加以注意。

条					
序列号的高 5 位为 07031 以前的	序列号的高 5 位为 07031 以后的	处理			
QnPHCPU/QnPRHCPU	QnPHCPU/QnPRHCPU				
有下列 1,2 情况之一时:		$B_n = 0, D_n = 0$			
1. 微分常数(D) = 0(TD = 0)		(但是, 进行回路标签过去值内			
2. 运算模式 (MODE) 为 MAN, LCM 和 CM	V 任一种	存的设置。)			
有下列 1, 2, 3 情况之一时:	有下列1、2、3情况之一时				
1. 积分常数(I) = 0 ($T_I = 0$)	1. 积分常数(I)=0(TI=0)				
2. 当 MHA 或 MLA 为 1 时	2. 当 MHA2 或 MLA2 为 1 时				
$(MVP > MH)$ 和 $(\frac{CT}{T_I} \times DV_n > 0)$	$(MVP > MH)$ 和 $(\frac{CT}{T_1} \times DV_n > 0)$	$\frac{CT}{T_1} \times DV_n = 0$			
3. 当 MHA 或 MLA 为 1 时	3. 当 MHA2 或 MLA2 为 1 时				
$(MVP < ML)$ 和 $(\frac{CT}{T_I} \times DV_n < 0)$	$(MVP < ML)$ 和 $(\frac{CT}{T_I} \times DV_n < 0)$				

(5) 偏差检测

在下列条件下执行偏差检测,检测结果输出至报警检测(ALM)的 DVLA 和偏差放大报警(BB1)的块内存。

条件	结果
DVL < DV	$DVLA = BB1 = 1^{*1}$
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = 上一个值状态保持*1
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0

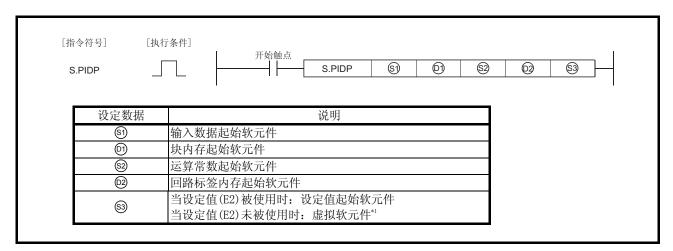
*1: 当报警检测禁止(INH)中的 DVLI 或 ERRI 被置 1 时,此时由于报警被禁止,DVLA 和 BB1 将显示 0。

出错代码: 4100

(6) 回路停止处理

- (a)报警检测(ALM)中的 SPA 设为 1 则选择回路停止。 如果进行回路停止将执行以下处理,并结束 S. 2PID 指令
 - 1) BW 变为 0。
 - 2) 将报警检测 (ALM) 中的 DVLA 变为 0。
 - 3) 将运行模式(MODE)改为 MAN。
 - 4) 将 BB 的 BB1 变为 0。
- (b) 如果将报警检测(ALM)中的 SPA 设为 0,将变为回路运行。 如果进行回路运行,将执行"(7)控制周期判断"。

(7) 控制周期判断


- (a) 若指定的控制周期未到达,则 BW(MV) 变为 0,结束 S. 2PID 指令。
- (b) 当指定的控制周期到达时,进行"(1) SV 设定处理"。

出错

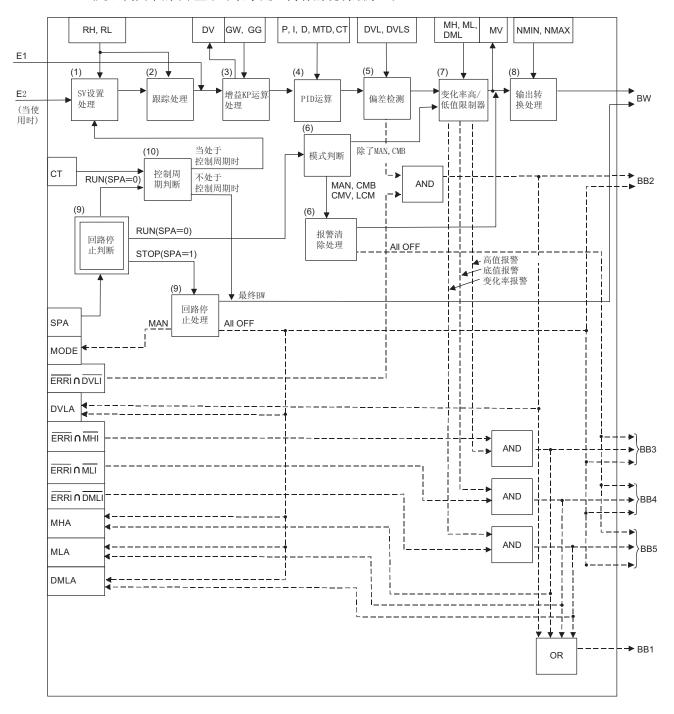
● 当运算错误发生时

9.3 位置类型 PID 控制(S. PIDP)

					可用软元件					
设定 数据	内部软元件 (系统、用户)		文件寄存器	MELSE(直接)	CNET/H JC 3\C 3	智能功能模块 [[]] \(G[])	变址寄存器 Zn		其他	
	位	字		位	字	火 いっぱい	ZII	К, Н		
§ 1	_	0		_						
61	_	0								
<u>\$2</u>	_	0		_						
<u>D2</u>	_	0		=						
<u>§3</u>	_	0				=	=			

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能


当指定控制周期到达时执行位置型 PID 运算。

亦可同时执行 SV 设定处理, 跟踪处理, 增益(Kp)运算处理, 偏差检测处理和运算模式(MODE)判断。

执行变化率,高/低值限制器和输出处理或报警清除处理和按照判断结果进行的输出转换处理。

结构图

S. PIDP 指令的处理块图如下图所示。 (处理块图中的(1)至(10)表示处理内容的说明顺序。)

控制数据

(1) S. PIDP 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输出数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	-	U
	©1+0 +1	BW	输出值	(-999999 至 999999)	_	实数	_	S
块内存	+2	BB BB1 BB2 BB3 BB4 BB5	报警 偏差放大报警 输出高值报警 输出低值报警 输出变化率报警		_	BIN 16 位	_	S
	\$2+0 +1	MTD	微分增益	0 至 999999	_	实数	8. 0	U
	+2 +3	DVLS	偏差过大 报警滞后	0至100	%	实数	2. 0	U
	+4	PN	运算模式	0: 反向运算 1: 正向运算	_	BIN 16 位	0	U
	+5	TRK	跟踪位	0: 禁止跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+6	SVPTN	设定值模式	0 到 3 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 位 位 使用*2 0: E2是上回路W 0: E2被使用 1: E2不是上回路W 1: E2没有被使用	_	BIN 16 位	3	U
	+7 +8	NMAX	输出转换上限	-999999 至 999999	_	实数	100.0	U
	+9 +10	NMIN	输出转换下限	-999999 至 999999	_	实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

9 - 19 9 - 19

^{*2:} 无论设定值(E2)是否被使用都可指定。 *3: 同设定值(E2),无论上回路的操作值(MV)是否被使用都可指定。

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	© +1	MODE	运行模式	0至FFFF _H b15 b12 b8 b4 b0 CCCCCCAAMLLLL SMCAMAUUACCCC VVBBBBSSTNCAM	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0至 FFFF ^H b15 b12 b8 b4 b0 S D M M M LA A A A SPA DVLA, DMLA, MHA, MLA 0: 回路RUN (0: 无报警) 1: 回路STOP (1: 报警)	_	BIN 16 位	4000н	S/U
回路标签 寄存器**	+4	INH	报警检测禁止	0 至 FFFF _H b15 b12 b8 b4 b0 E R R R M M N N N N N N N N N N N N N N N	_	BIN 16 位	4000 _H	S/U
	+12 +13	MV	操作值	(-10 至 110)	%	实数	0.0	S/U
	+14 +15	SV	设定值	RL至RH	_	实数	0.0	U
	+16 +17	DV	偏差	(-110至110)	%	实数	0.0	S
	+18 +19	МН	输出上限值	-10至110	%	实数	100.0	U
	+20 +21	ML	输出下限值	-10至110	%	实数	0.0	U
	+22 +23	RH	工程值上限值	-999999 至 999999	_	实数	100.0	U
	+24 +25	RL	工程值下限值	-999999 至 999999	_	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 CT ≤ 32767	S	实数	1.0	U
	+48 +49	DML	输出变化率限制 值	0至100	%	实数	100.0	U
	+50 +51	DVL	偏差限制值	0至100	%	实数	100.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。

用户不能设定该参数。 *2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

指定位	:置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
回路标签 寄存器 ^{*2}	©2+52 +53	Р	増益	0 至 999999	_	实数	1.0	U
	+54 +55	I	积分常数	0 至 999999	S	实数	10. 0	U
	+56 +57	D	微分常数	0 至 999999	S	实数	0.0	U
	+58 +59	GW	间隙宽度	0至100	%	实数	0.0	U
	+60 +61	GG	间隙增益	0至999999		实数	1.0	U
回路标签 过去值 寄存器*2 *3	©2+96 : +116	_	_	作为工作区域由系统使用	I	_		S
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1: 在推荐范围栏中,凡是围有括号的项目均用于系统存储数据。 用户不能设定该参数。
- *2: 回路标签内存和回路标签过去值内存总共占用 128 个字。(详见 3. 3. 1 项)
- *3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明
©2+96	控制周期计数器初始化预置标志
+97	控制周期计数器
+100 +101	In-1(上一个值)
+102 +103	B _{n-1} (上一个值)
+104 +105	PVn(测定量)
+106 +107	PV _{n-1} (上一个测定量)
+116	报警检测 2 (ALM2)
	b15 b12 b8 b4 b0 M M H L H A A A 2 2 2 MHA2, MLA2 (0: 无报警) (1: 有报警)

此外,如果从初始状态开始控制,需要通过顺控程序进行数据清除。

*4: 当设定值模式(SVPTN)设为"使用 E2"时设定值(E2)有效。

当使用上位回路的 MV 作为设定值(E2)时,应指定设置了上位回路的操作值(MV)的软元件(偏置+12: MV)。此外,若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。(特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理说明

(1) SV 设定处理

根据运行模式(MODE)的设置执行以下处理。

- (a) 当运行模式 (MODE) 为 CAS、CCB 和 CSV 中的任一种时:
 - 1) 当指定了设定值(E2)时,按下述公式执行了工程值转换之后,执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当未指定设定值(E2)时,将在未执行工程值转换的状况下执行"(2)跟踪处理"。
- (b) 当运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 设定值(SV)按下列运算等式由工程值反变换计算SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当下列所有条件成立时, 执行跟踪处理:
 - 1) 运算常数的的跟踪位(TRK)为1时。
 - 2) 使用设定值(E2)时。
 - 3)运行模式(MODE)为 MAN、AUT、CMV、CMB、CAB、LCM、LCA 和 LCC 中的任一种时。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上回路的操作值(MV),在上回路中的报警检测禁止(INH)的跟踪标志(TRKF)变为 1。

(3) 增益(Kp)运算处理

(a) 偏差(DV) 在下述条件下进行计算:

条件	运算等式
正向运算(PN = 1)	$DV = E1 - SV_n$
反向运算(PN = 0)	$DV = SV_n' - E1$

(b)将输出增益(K)以下述条件进行计算。

条件	运算等式
当 DV ≦ GW 时	K = GG
当 DV > GW 时	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) PID 运算

PID 运算按下述公式执行:

	项目	运算等式	
Bn	正向运算 (PN = 1)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - PV_{n-1}) - \frac{CT \times B_{n-1}}{T_D} \}$	
DII	反向运算 (PN = 0)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - PV_{n-1}) - \frac{CT \times B_{n-1}}{T_D} \}$	
In		$I_{n-1} + \frac{CT}{T_1} \times DV_n$	
T		$Kp \times (DVn + In + Bn)$	

K_P: K × 增益(P), M_D: 微分增益(MTD) T_I: 积分常数(I), T_D: 微分常数(D)

但是,在下述情况下将执行特别处理,应加以注意。

条	件	
序列号的高 5 位为 07031 以前的	序列号的高 5 位为 07031 以后的	处理
QnPHCPU/QnPRHCPU	QnPHCPU/QnPRHCPU	
有下列1,2情况之一时:		$B_n = 0$
1. 微分常数(D) = $0(T_D = 0)$		(然而回路标签过去值寄存器被
2. 运算模式 (MODE) 为 MAN, LCM 和 CM	₩ 任一种	设定)
有下列1、2、3情况之一时:	在下列1、2、3、4情况之一时:	
1. 积分常数(I) = $0(T_I = 0)$	1. 积分常数(I) = 0(T _I = 0)	
2. 当 MHA 变为 1 时	2. 当 MHA2 变为 1 时	
$\frac{CT}{T_1} \times DV_n > 0$	$\frac{CT}{T_1} \times DV_n > 0$	
3. 当 MLA 变为 1 时	3. 当 MLA2 变为 1 时	
$\frac{CT}{T_1} \times DV_n < 0$	$\frac{CT}{T_1} \times DV_n < 0$	
	4. 当运行模式(MODE)为 MAN、	$\frac{CT}{T_1} \times DV_n = 0$
	LCM、CMV 中之一时	
	下列1、2、3的所有条件都成立时	
	1. 当 SD1508 的 b0 变为 1 时。	
_	2. 当报警检测禁止(INH)中的跟踪	
	标志(TRKF)变为1时。	
	3. 当运行模式不是 MAN、LCM 和	
	CMV 时。	

(5) 偏差检查

在下列条件下执行偏差检查,将其结果输出至报警检测(ALM)的 DVLA 和块内存的偏差过大报警 (BB2)中。

条件	结果
DVL < DV	$DVLA = BB2 = 1^{*1}$
$(DVL-DVLS) < DV \le DVL$	DVLA = BB2 = 上一个值状态保持*1
$ DV \le (DVL - DVLS)$	DVLA = BB2 = 0

*1: 当报警检测禁止(INH)中的 DVLI 或 ERRI 被置 1 时,此时由于报警被禁止,DVLA 和 BB2 将显示 0。

(6) 模式判断

根据运行模式(MODE)执行以下处理。

- (a) 当运行模式 (MODE) 为 MAN、CMB、CMV 和 LCM 中的任一种时(报警清除处理):
 - 1) 将报警检测(ALM)的 MHA、MLA 和 DMLA 变为 0。
 - 2) 将报警检测 2(ALM2)的 MAH2 和 MLA2 变为 0。
 - 3) 将 BB 的 BB3 到 BB5 变为 0。
 - 4) 将 BB2 的数据传送到 BB 的 BB1 中。(BB1 = BB2)
 - 5) 执行"(8)输出转换处理", 结束 S. PIDP 指令。
- (b) 当运行模式为 AUT、CAB、CAS、CCB、CSV、LCA 和 LCC 中的任一种时,执行"(7)变化率、上/下限限制器"。

(7) 变化率、上/下限限制器

在临时 MV (T) 和操作值 (MV) 存在偏差时对输入值 (E1) 进行变化率和上/下限的检查,进行限制器处理之后的数据和报警输出。

(a) 在变化率限制器中执行下述运算,并将运算结果输出至报警检测(ALM)的 DMLA 及块内存的输出变化率报警(BB5)中。

条件	BB5, DMLA	T1		
$ T - MV \leq DML$	0	T		
(T - MV) > DML	1^{*1}	MV + DML		
(T - MV) < - DML	1^{*1}	MV — DML		

*1: 当报警检测禁止(INH)中的 DMLI 或 ERRI 被置 1 时,由于报警被禁止,DMLA 和 BB5 将显示 0。

(b) 在上/下限限制器中执行下述运算,并将运算结果输出至 BB3、BB4、MHA、MLA、MHA2 和 MLA2 中。

条件	BB4, MLA, MLA2	BB3, MHA, MHA2	MV
T1 > MH	0	1*2	MH
T1 < ML	1*3	0	ML
$ML \leq T1 \leq MH$	0	0	T1

- *2: 当报警检测禁止(INH)中的 MHI 或 ERRI 为 1 时,由于报警被禁止,MHA 和 BB3 将变为 0。 然而,即使报警检测禁止(INH)中的 MHI 或 ERRI 为 1,MHA2 也保持为 1 不变。
- *3: 当报警检测禁止(INH)中的 MLI 或 ERRI 为 1 时,由于报警被禁止,MLA 和 BB4 将变为 0。 然而,即使报警检测禁止(INH)中的 MLI 或 ERRI 为 1,MHA2 也保持为 1 不变。

(8) 输出转换处理

在输出转换中执行以下处理。

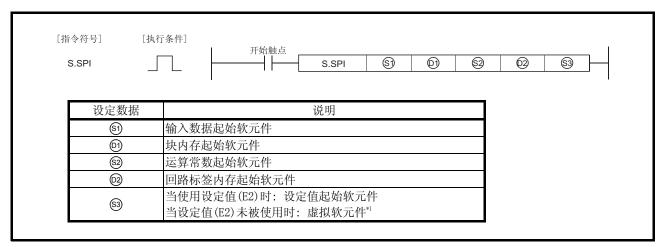
$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

出错代码: 4100

(9) 回路停止处理

- (a) 如果将报警检测(ALM)中的 SPA 设置为 1,则回路将停止。如果进行回路停止将执行下列操作,并终止 S. PIDP 指令。
 - 1) BW 保持为上一次的值。
 - 2) 将报警检测(ALM)的 DVLA、MHA、MLA 和 DMLA 变为 0。
 - 3) 将报警检测 2(ALM2)的 MHA2 和 MLA2 变为 0。
 - 4) 将运算模式(MODE) 改为 MAN。
 - 5) 将 BB 的 BB1 至 BB5 变为 0。
- (b) 如果将报警检测 (ALM) 中的 SPA 设为 0,将变为回路运行。 回路运行时执行"(10) 控制周期判断"。

(10)控制周期判断

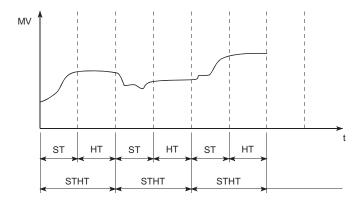

- (a) 当未到达指定的控制周期时,执行"(6) 模式判断",如 T=MV。
- (b) 当到达了指定的控制周期时,执行"(1) SV 设定处理"。

出错

● 当发生了运算错误时

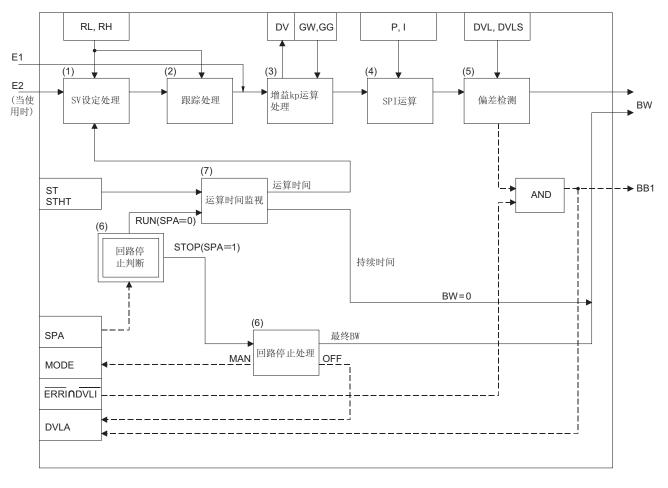
9.4 采样 PI 控制(S. SPI)

				可用软元件						
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 直接 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字		位	字	次 UL 1 (UL 1	ZII	Ν, 11		
§ 1	=	0		_						
61	=			=						
<u>\$2</u>	_		0		_					
(D2)	_	0		_						
§ 3	_	0				=	=			



*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能


在运算时间(ST)内执行常规PI运算。

在运算时间(ST)或保持时间(HT)两者中进行判断。若为运算时间,则执行 SV 设定处理,跟踪处理,增益(Kp)运算处理,SPI 运算和偏差检测。

结构图

S. SPI 指令的块图如下所示。 (图中(1)至(7)表示处理的顺序。)

控制数据

(1) S. SPI 指令中的数据定义

指定位置		符号	名称	推荐范围*1		数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值 (ΔMV)	(-999999 至 999999)	%	实数	-	S
		BB		_				
块内存	+2	BB1	偏差放大报警	b15 b12 b8 b4 b0 B B B B 1 1 (0: 无报警)	_	BIN 16 位	Ι	S
	\$2+0 +1	DVLS	偏差过大报警滞 后	0至100	%	实数	2. 0	U
	+2	PN	运算模式	0: 反向运算 1: 正向运算	_	BIN 16 位	0	U
	+3	TRK	跟踪位	0: 禁止跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+4	SVPTN	设定值模式	0至 3 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 位置模式*3 设定值使用*2 0: E2是上回路MV 0: E2被使用 1: E2不是上回路MV 1: E2没有被使用	_	BIN 16 位	3	U

*1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

*2: 无论设定值(E2)是否被使用都可指定。 *3: 同设定值(E2),无论上回路的操作值(MV)是否被使用都可指定。

9 - 28 9 - 28

指定位	置.	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	© +1	MODE	运行模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
回路标签 寄存器**	+3	ALM	报警检测	0至FFFFH b15 b12 b8 b4 b0 P A D M M M L A A A SPA DVLA, MHA, MLA 0: 回路RUN (0: 无报警) 1: 回路STOP (1: 报警)	_	BIN 16 位	4000н	S/U
	+4	INH	报警检测禁止	0 至 FFFF _H b15 b12 b8 b4 b0 E T D M M M V H L R R R R V H L I F I I I I TRKF (0: 无跟踪) (1: 有跟踪) ERRI, DVLI, MHI, MLI 0: 能够报警 1: 报警禁止	_	BIN 16 位	4000н	S/U
	+14 +15	SV	设定值	RL至RH	_	实数	0.0	U
	+16 +17	DV	偏差	(-110 至 110)	%	实数	0.0	S
	+22 +23	RH	工程值上限值	-999999 至 999999	-	实数	100.0	U
	+24 +25	RL	工程值下限值	-999999 至 999999	_	实数	0.0	U
	+46 +47	ST	运算时间	0 至 999999 注意 ST ≤ 32767	S	实数	0.0	U
	+50 +51	DVL	偏差限制值	0至100	%	实数	100.0	U
	+52 +53	Р	增益	0 至 999999	_	实数	1.0	U
	+54 +55	Ι	积分常数	0 至 999999	S	实数	10.0	U
	+56 +57	STHT	采样周期	0 至 999999 注意 STHT ≤ 32767	S	实数	0.0	U
	+58 +59	GW	间隙宽度	0至100	%	实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

指定位	指定位置 符号		名称	推荐范围*1	单位	数据格式	标准值	存储
回路标签	©+60 +61	GG	间隙增益	0 至 999999	_	实数	1. 0	U
寄存器*2	+62 +63	MVP	MV 内部运算值	(-999999 至 999999)	%	实数	0.0	S
回路标签 过去值 寄存器*2*2	©2+96 : +116		_	作为工作区域由系统使用		_		_
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1: 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。
- *2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)
- *3: 回路标签过去值内存的应用如下所述:

指定位置	说明
D2+96	控制周期计数器初始化预置标志
+97	采样计数器
+98	运算定义
+99	保持计数器
+100	DV _{n-1} (上一个偏差值)
+101	DVn-1(工.
+116	报警检测 2 (ALM2)
	b15 b12 b8 b4 b0 M M L H A A A 2 2 2 MHA2, MLA2 (0: 元报警) (1: 有报警)

此外,如果从初始状态开始控制,需要通过顺控程序进行数据清除。

*4: 当设定值模式(SVPIN)设为"使用 E2"时设定值(E2)有效。

当使用上位回路的 MV 作为设定值(E2)时,应指定设置了上位回路的操作值(MV)的软元件(偏置+12: MV)。

此外,若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。

(特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

将执行周期以实数设定到 SD1500 和 SD1501 中。

处理内容

(1) SV 设定处理

根据运行模式(MODE)的设置执行下述处理。

- (a) 当运算模式 (MODE) 为 CAS, CCB 和 CSV 中的任一种时:
 - 1) 当设定值(E2)被指定时,工程值转换按下述等式执行,接下来执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当设定值(E2)未被指定时,即使工程值转换未在执行中"(2)跟踪处理"仍可执行。
- (b) 当运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 将设定值(SV) 按下列运算公式进行工程值逆转换以计算出 SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当下列所有条件均成立时,执行跟踪处理。
 - 1) 运算常数的跟踪位(TRK)为1时。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上位回路的操作值(MV)时,上位回路的报警检测禁止(INH)的跟踪标志 (TRKF) 将变为 1。

(3) 增益(Kp)运算处理

(a) 将偏差(DV) 以下述条件算出:

条件	运算等式		
正向运算(PN = 1)	$DV = E1 - SV_n$		
反向运算(PN = 0)	$DV = SV_n' - E1$		

(b)输出增益(K)在下述条件下进行计算:

条件	运算等式
当 DV ≦ GW 时	K = GG
当 DV > GW 时	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) SPI 运算

SPI 运算按下述等式执行:

条件	运算等式
在运算时间(ST)期间	$BW = K_P \times \{(DV_n - DV_{n-1}) + \frac{BT}{T_1} \times DV_n\}$
在保持时间(STHT - ST)期间	BW = 0 (回路标签过去值寄存器未被置位。)

K_P: K × 增益(P), T_I: 积分常数(I), BT: 执行周期(ΔT)

然而在下述情况下,需注意特殊处理的执行:

条		
QnPHCPU/QnPRHCPU(序列号的高	QnPHCPU/QnPRHCPU(序列号的高	处理
五位为: 07031 或以前)	五位为: 07032 或以后)	
有下列 1, 2, 3 情况之一时:	有下列1,2,3情况之一时:	
1. 积分常数(I) = 0 (T _I = 0)	1. 积分常数(I)=0(T _I =0)	
2. 当 MHA 或 MLA 为 1 时	2. 当 MHA2 或 MLA2 为 1 时	
$(MVP > MH)$ 和 $(\frac{CT}{T_1} \times DV_n > 0)$	$(MVP > MH)$ 和 $(\frac{CT}{T_1} \times DV_n > 0)$	$\frac{CT}{T_1} \times DV_n = 0$
3. 当 MHA 或 MLA 为 1 时	3. 当 MHA2 或 MLA2 为 1 时	
$(MVP < ML)$ 和 $(\frac{CT}{T_1} \times DV_n < 0)$	$(MVP < ML)$ 和 $(\frac{CT}{T_1} \times DV_n < 0)$	

错误代码: 4100

(5) 偏差检查

在下列条件下执行偏差检查时,将其结果输出至报警检测(ALM)的 DVLA 和块内存的偏差过大报警(BB1)中。

条件	结果
DVL < DV	$DVLA = BB1 = 1^{*1}$
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = 上一个值状态保持*1
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0

*1: 当报警检测禁止(INH)中的 DVLI 或 ERRI 为 1 时,此时由于报警被禁止,DVLA 和 BB1 将变为 0。

(6) 同路停止处理

- (a) 报警检测(ALM)中的 SPA 设为 1 则选择回路停止。 回路停止执行下列操作并终止 S. PIDP 指令:
 - 1) BW 变为 0。
 - 2)报警检测(ALM)的 DVLA 变为 0。
 - 3) 运算模式 (MODE) 改为 MAN。
 - 4) BB的 BB1 变为 0。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 如果使回路运行,则进行"(7)动作时间/保持时间检查判断"。

(7) 动作时间/保持时间检查判断

无论是运算时间(ST)或保持时间(HT = STHT - ST)均进行判断且执行以下处理:

(a) 动作时间(ST)时

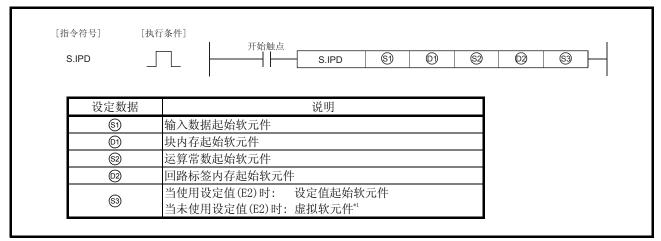
执行SV设定处理、跟踪处理、增益(KP)运算处理、PI运算(动作时间)和偏差检查。

(b)保持时间(HT = STHT - ST)

执行跟踪处理, SPI 运算(保持时间)和偏差检测。

但是,在下述条件时将保持时间置于0,进行连续PI控制。

$$\frac{\mathsf{STHT}}{\Delta\mathsf{T}} \leqq \frac{\mathsf{ST}}{\Delta\mathsf{T}}$$


当 $\frac{STHT}{\Delta T}$ 的积分部分为 0 时,不执行任何处理。(ΔMV 亦保持不变。)

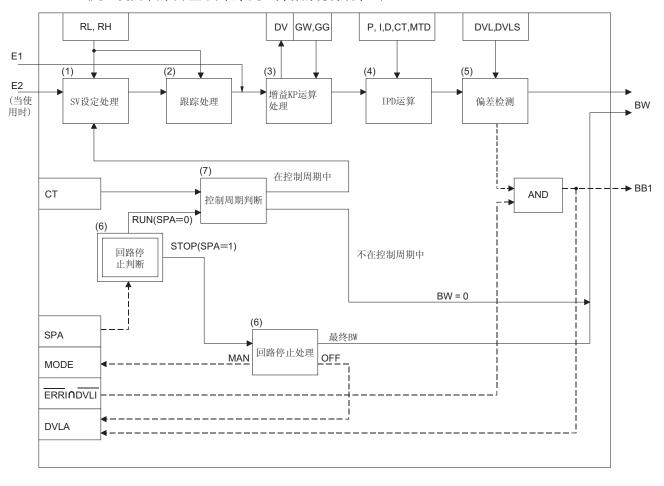
错误

● 当运算错误发生时

9.5 I-PD 控制(S. IPD)

				可用软元件						
设定 数据		改元件 , 用户)	文件寄存器	MELSECNET/H 直接 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字		位	字		ZII	Ν, П		
§ 1	_	(О	_						
© 1	_	(0		_					
<u>\$2</u>	_	(0		_					
D2	_	0		_						
§ 3	_	0				=	=			

*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。


功能

当到达指定的控制周期时执行 I-PD 控制。

此时也可执行 SV 设定处理、跟踪处理、增益(Kp)运算处理和偏差检查处理。

结构图

S. IPD 指令的处理块图如下所示。 (处理块图中的(1)至(7)表示处理内容的说明顺序。)

控制数据

(1) S. IPD 指令中指定的数据

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值 (ΔMV)	(-999999 至 999999)	%	实数	_	S
		BB		_				
块内存	+2	BB1	偏差放大报警	b15 b12 b8 b4 b0 B B B B 1 1 (0: 无报警) (1: 报警)	_	BIN 16 位	_	S
	\$2+0 +1	MTD	微分增益	0 至 999999	_	实数	8. 0	U
	+2 +3	DVLS	偏差放大 报警滞后	0至100	%	实数	2. 0	U
	+4	PN	运算模式	0: 反向运算 1: 正向运算	_	BIN 16 位	0	U
	+5	TRK	跟踪位	0: 禁止跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+6	SVPTN	设定值模式	0至3 b15 b12 b8 b4 b0 设定值模式*3 设定值使用*2 0: E2是上回路MV 0: E2被使用 1: E2没有被使用	_	BIN 16 位	3	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。
- *2: 无论设定值(E2)是否被使用都可指定。 *3: 同设定值(E2),无论上回路的操作值(MV)是否被使用都可指定。

9 - 35 9 - 35

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	@+1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0至 FFFFH b15 b12 b8 b4 b0 S	_	BIN 16 位	4000н	S/U
回路标签 寄存器**	+4	INH	报警检测禁止	0 至 FFFF _H b15 b12 b8 b4 b0 ER R R K L L L L L L L L L L L L L L L L	_	BIN 16 位	4000н	S/U
	+14 +15	SV	设定值	RL 至 RH	_	实数	0.0	U
	+16 +17	DV	偏差	(-110至110)	%	实数	0.0	S
	+22 +23	RH	工程值上限	-999999 至 999999	_	实数	100. 0	U
	+24 +25	RL	工程值下限	-999999 至 999999	_	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 <u>CT</u> ≤ 32767	S	实数	1.0	U
	+50 +51	DVL	偏差限制值	0至100	%	实数	100.0	U
	+52 +53	Р	增益	0 至 999999	_	实数	1.0	U
	+54 +55	I	积分常数	0 至 999999	S	实数	10.0	U
	+56 +57	D	微分常数	0 至 999999	S	实数	0.0	U
	+58 +59	GW	间隙宽度	0至100	%	实数	0.0	U

^{*1:}在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

指定位	指定位置符号		名称	推荐范围*1	单位	数据格式	标准值	存储
回路标签	©+60 +61	GG	间隙增益	0 至 999999	_	实数	1. 0	U
寄存器*2	+62 +63	MVP	MV 内部运算值	(-999999 至 999999)	%	实数	0.0	S
回路标签 过去值 寄存器*2*3	©+96 : +116	_	_	作为工作区域由系统使用				S
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1:在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。
- *2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)
- *3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明					
©+96	控制周期计数器初始化预置标志					
+97	控制周期计数器					
+102	B _{n-1} (上一个值)					
+103	Dn-1 (工. 一/1 <u>目</u> .)					
+104	PVn(测定量)					
+105	I Vn (例足里)					
+106	PVn-1(上一个测定量)					
+107	I Vn-I(上)例足里/					
+108	PV _{n-2} (上一个测定量的前一个测定量)					
+109	1112(工 树足里时间 树足里/					
+116	报警检测 2 (ALM2)					
	b15 b12 b8 b4 b0					
	M M L H A A 2 2 2					
	MHA2, MLA2 (0: 无报警) (1: 有报警)					

此外,从初始状态开始控制时,必须通过顺控程序进行数据清除。

*4: 当设定值模式(SVPTN)设为"使用 E2"时设定值(E2)有效。

当使用上位回路的 MV 作为设定值(E2)时,应指定设定了上位回路的操作值(MV)的软元件(偏置 + 12: MV)。此外,若未使用 E2 作为设定值,请务必指定一个虚拟软元件。

(可以将特殊寄存器的 SD1506 指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

将执行周期以实数设定到 SD1500、SD1501 中。

处理说明

(1) SV 设定处理

根据运行模式(MODE)的设置,执行以下处理。

- (a) 当运行模式 (MODE) 为 CAS、CCB 和 CSV 中的任一种时
 - 1) 当指定了设定值(E2)时,按下述公式执行工程值转换之后,执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当设定值(E2)未被指定时,即使工程值转换未在执行中"(2)跟踪处理"仍可执行。
- (b) 当运行模式 (MODE) 为 MAN、AUT、CMV、CMB、CAB、LCM、LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 通过下列运算公式对设定值(SV)进行工程值逆转换以计算出SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当下列所有条件成立时, 执行跟踪处理:
 - 1) 运算常数的跟踪位(TRK)为1。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上位回路的操作值(MV)时,上位回路的报警检测禁止(INH)的跟踪标志 (TRKF) 将变为 1。

(3) 增益(Kp)运算处理

(a) 偏差(DV) 在下述条件下进行计算:

条件	运算等式
正向运算(PN = 1)	$DV = E1 - SV_n$
反向运算(PN = 0)	$DV = SV_n' - E1$

(b)输出增益(K)在下述条件下进行计算:

条件	运算等式
当 DV ≦ GW 时	K = GG
当 DV > GW 时	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) I-PD 运算

按下述公式执行 I-PD 运算:

	项目	运算等式				
Bn	正向运算(PN = 1)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$				
DII	反向运算(PN = 0)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$				
DW (AMV)	正向运算(PN = 1)	$K_P \times \{\frac{CT}{T_1} \times DV_n + (PV_n - PV_{n-1}) + B_n\}$				
BW (△MV)	反向运算(PN = 0)	$K_P \times \{\frac{CT}{T_1} \times DV_n - (PV_n - PV_{n-1}) + B_n\}$				

K_P: K × 增益 (P), M_o: 微分增益 (MTD) T_I: 积分常数 (I), T_o: 微分常数 (D)

然而在下述情况下,需注意特殊处理的执行:

条	条件					
QnPHCPU/QnPRHCPU(序列号的高五	QnPHCPU/QnPRHCPU(序列号的高五					
位为: 07031 以前)	位为: 07032 或以后)					
有下列1、2情况之一时:		$B_n = 0$				
1. 微分常数(D) = 0(TD = 0)		(然而回路标签过去值寄存器被				
2. 运算模式(MODE)为 MAN, LCM 和 CM	IV 任一种	设定)				
有下列1、2、3情况之一时	有下列1、2、3情况之一时					
1. 积分常数(I) = $0(T_I = 0)$	1. 积分常数(I)=0(T _I =0)					
2. 当 MHA 或 MLA 的出错变为 1 时	2. 当 MHA2 或 MLA2 变为 1 时					
$(MVP > MH)$ 和 $(\frac{CT}{T_1} \times DV_n > 0)$	$(MVP > MH)$ 和 $(\frac{CT}{T_1} \times DV_n > 0)$	$\frac{CT}{T_1} \times DV_n = 0$				
3. 当 MHA 或 MLA 的出错变为 1 时	3. 当 MHA2 或 MLA2 变为 1 时					
$(MVP < ML)$ 和 $(\frac{CT}{T_I} \times DV_n < 0)$	$(MVP < ML)$ 和 $(\frac{CT}{T_I} \times DV_n < 0)$					

(5) 偏差检查

在下列条件下执行偏差检查,将检测结果输出至报警检测(ALM)的 DVLA 和块内存的偏差过大报警(BB1)中。

条件	结果
DVL < DV	$DVLA = BB1 = 1^{*1}$
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = 上一个值状态保持*1
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0

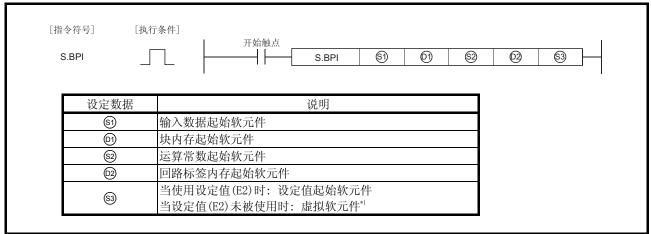
*1: 当报警检测禁止(INH)中的 DVLI 或 ERRI 被置 1 时,此时由于报警被禁止,DVLA 和 BB1 将显示 0。

(6) 回路停止处理

- (a) 如果将报警检测 (ALM) 的 SPA 设为 1,则变为回路停止。 如果执行回路停止,将执行下列操作并终止 S. IPD 指令:
 - 1) BW 变为 0。
 - 2) 报警检测(ALM)的 DVLA 变为 0。
 - 3) 运算模式(MODE) 改为 MAN。
 - 4) BB的 BB1 变为 0。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(7)控制周期判断"。

错误代码: 4100

(7) 控制周期判断


- (a) 若指定控制周期未到达时,BW(ΔMV) 变为 0, S. IPD 指令终止。
- (b) 当到达指定的控制周期时, 执行"(1) SV 设定处理"。

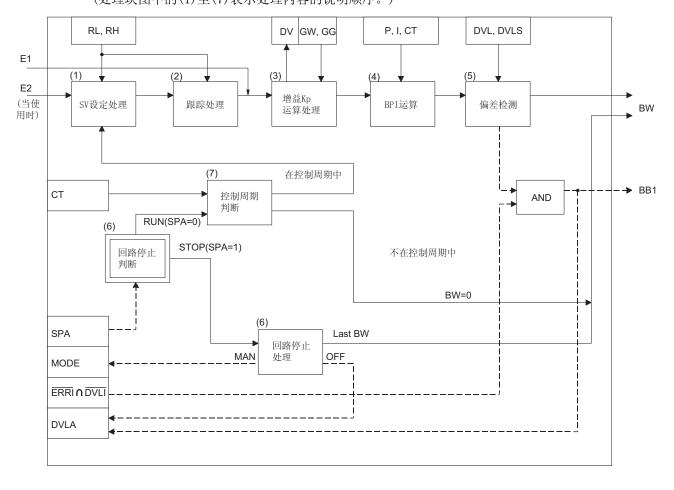
错误

● 当发生运算错误时

9.6 混合 PI 控制(S. BPI)

					可用软元件				
设定 数据		次元件 用户)	文件寄存器	MELSE(直接,			变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	大 ULJ\ULJ	ZII	Ν, 11	
§ 1	_	0		-					
©1		0		_					
<u>\$2</u>	I					=	=		
©2	_				•	=	=		
<u>\$3</u>	_					=	=		

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。


功能

当到达指定控制周期时执行 BPI 运算。

亦可同时执行 SV 设定处理, 跟踪处理, 增益(Kp)运算处理和偏差检测处理。

结构图

S. BPI 指令的块图如下所示。 (处理块图中的(1)至(7)表示处理内容的说明顺序。)

控制数据

(1) S. BPI 指令中的数据定义

指定位置	Ĩ.	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值 (ΔMV)	(-999999 至 999999)	%	实数		S
		BB		<u>-</u>				
块内存	+2	BB1	偏差放大报警	b15 b12 b8 b4 b0 B B B 1 1 (0: 无报警)		BIN 16 位	П	S
	\$2+0 +1	DVLS	偏差放大报警滞 后	0至100	%	实数	2. 0	U
	+2	PN	运算模式	0: 反向运算 1: 正向运算	_	BIN 16 位	0	U
	+3	TRK	跟踪位	0: 禁止跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+4	SNPTN	设定值模式	0至 3 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 b16 b17 b18 b18 b2	_	BIN 16 位	3	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

9 - 43 9 - 43

^{*2:} 无论设定值(E2)是否被使用都可指定。 *3: 同设定值(E2),无论的上回路的操作值(MV)是否被使用都可指定。

指定位置	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	© 2+1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0至FFFFH b15 b12 b8 b4 b0 SPA	_	BIN 16 位	4000н	S/U
回路标签 寄存器**	+4	INH	报警检测禁止	0至 FFFFH b15 b12 b8 b4 b0 E R R R R V H L F V H L I I I I TRKF (0: 无跟踪) (1: 有跟踪) ERRI, DVLI, MHI, MLI 0: 能够报警 1: 报警禁止	_	BIN 16 位	4000н	S/U
	+14 +15	SV	设定值	RL 至 RH	_	实数	0.0	U
	+16 +17	DV	偏差	(-110至110)	%	实数	0.0	S
	+22 +23	RH	工程值上限	-999999 至 999999	_	实数	100. 0	U
	+24 +25	RL	工程值下限	-999999 至 999999	_	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 CT ≤ 32767	S	实数	1.0	U
	+50 +51	DVL	偏差限制值	0至100	%	实数	100.0	U
	+52 +53	Р	増益	0 至 999999		实数	1.0	U
	+54 +55	Ι	积分常数	0 至 999999	S	实数	10. 0	U
	+56 +57	SDV	DV 累积值 (ΣDV)	-999999 至 999999	%	实数	0.0	S

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

9 - 44 9 - 44

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

指定位	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
回路标签	©2+58 +59	GW	间隙宽度	0至100	%	实数	0.0	U
寄存器*2	+60 +61	GG	间隙增益	0 至 999999	_	实数	1. 0	U
回路标签 过去值 寄存器*2 *3	©2+96 : +99	_	_	作为工作区域由系统使用	ĺ	_		S
设定值 *4	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

*1: 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

不能由用户进行数据设置。

*2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

*3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明
© 2+96	控制周期计数器初始化预设标志
+97	控制周期计数器
+98	$\underline{CT} \times \Sigma DV_1$
+99	Tı ^ ZDVI

此外,从初始状态开始控制时,必须通过顺控程序进行数据清除。

*4: 当设定值模式(SVPTN)设定为"使用 E2"时设定值(E2)有效。

当使用上回路的 MV 作为设定值(E2)时, 指定软元件使得在其中上回路的操作值(MV)可以设定(偏移 + 12: MV)。

若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。

(特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

将执行周期以实数设定到 SD1500 和 SD1501 中。

处理说明

(1) SV 设定处理

根据运行模式(MODE)的设置执行以下处理。

- (a) 当运行模式 (MODE) 为 CAS、CCB 和 CSV 中的任一种时
 - 1) 当指定了设定值 E2 时,按下述公式执行工程值转换之后执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当未指定设定值 E2 时,将在不执行工程值转换的状况下执行"(2) 跟踪处理"。
- (b) 当运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 将设定值(SV) 按下列运算公式进行工程值逆转换以计算出 SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当下列所有条件成立时, 执行跟踪处理
 - 1) 运算常数的跟踪位(TRK)为1时。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上回路的操作值(MV),在上回路中的报警检测禁止(INH)的跟踪标签(TRKF) 变为 1。

(3) 增益(Kp)运算处理

(a) 偏差(DV) 在下述条件下进行计算:

条件	运算等式
正向运算(PN = 1)	$DV = E1 - SV_n$
反向运算(PN = 0)	$DV = SV_n' - E1$

(b)输出增益(K)在下述条件下进行计算:

条件	运算等式
当 DV ≦ GW 时	K = GG
当 DV > GW 时	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) BPI 运算

BPI 运算按下述等式执行:

条件	运算等式
BW (\(\Delta MV\)	$K_P \times BT \times (DV_n + \frac{CT}{T_1} \times \Sigma DV_1)$

Kp: K × 增益(P), BT: 执行周期, T1: 积分常数(I),

Σ DVI: DVn 的累积值, DVn: 偏差

然而在下述情况下,需注意特殊处理的执行:

条件	运算等式
有下列 1, 2 情况之一时: 1. 积分常数(I) = 0 (T _I = 0) 2. 报警检测(ALM)的 MLA 或 MHA 为 1	$\frac{CT}{T_1} \times \Sigma DV_1 =$ 最终值不变
1. 积分常数(I) ≠ 0 (T _I ≠ 0)	$\frac{CT}{T_{I}} \times \Sigma DV_{I} = \frac{CT}{T_{I}} \times (\Sigma DV_{I} + DV_{D})$

错误代码: 4100

(5) 偏差检查

在下列条件下执行偏差检查,将其结果输出至报警检测(ALM)的 DVLA 和块内存的偏差过大报警 (BB1)中。

条件	结果
DVL < DV	DVLA = BB1 = 1 *1
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = 上一个值状态保持*1
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0

*1: 当报警检测禁止(INH)的 DVLI 或 ERRI 为 1 时,此时由于报警被禁止,DVLA 和 BB1 将变为 0。

(6) 回路停止处理

- (a) 如果将报警检测 (ALM) 的 SPA 设为 1,则变为回路停止。 回路停止执行下列操作并终止 S. BPI 指令:
 - 1) BW 变为 0。
 - 2) 报警检测(ALM)的 DVLA 变为 0。
 - 3) 运算模式(MODE) 改为 MAN。
 - 4) BB的 BB1 变为 0。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(7)控制周期判断"。

(7) 控制周期判断

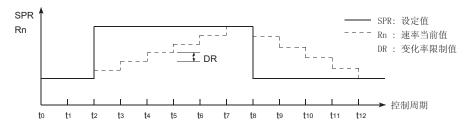
- (a) 若未到达指定控制周期时,将BW置于0,结束S.BPI指令。
- (b) 当到达指定控制周期时,执行"(1)SV设定处理"。

错误

● 当发生运算错误时

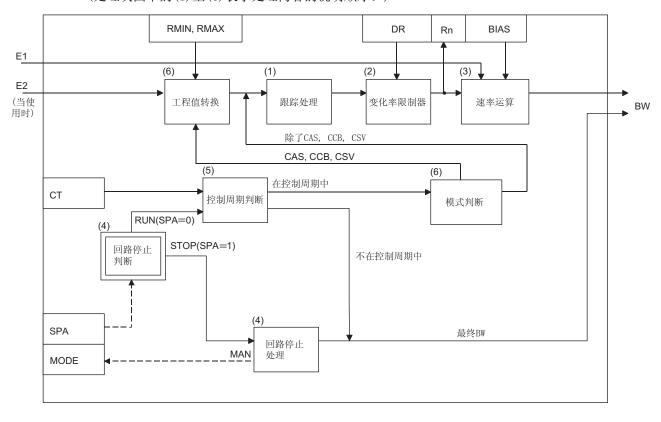
9.7 比率(S.R)

					可用软元件						
设定 数据					文件寄存器	MELSECNET/H 直接 J[3\[3		智能功能模块以了	变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	火 ∪∟」/∪∟」	ZII	Λ, 11			
§ 1	_			_							
61				_							
<u>\$2</u>			0		_						
© 2		0		_							
§ 3	_					=	=				



*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能


当到达指定控制周期时执行比率运算。

亦可同时执行运算模式(MODE)判断,工程值转换,跟踪处理和变化率限制处理。

块图

S.R 指令的处理块图如下所示。 (处理块图中的(1)至(6)表示处理内容的说明顺序。)

控制数据

(1) S.R 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
块内存	①+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
	S2+0	TRK	跟踪位	0: 禁止跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+1	SVPTN	设定值模式	0 至 3 b15 b12 b8 b4 b0 设定值模式**3 设定值使用**2 0: E2是上回路MV 0: E2被使用 1: E2不是上回路MV 1: E2没有被使用	_	BIN 16 位	3	U
	©2+1	MODE	运算模式	0 至 FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
回路 寄存器 [™]	+3	ALM	报警检测	0至FFFFH b15 b12 b8 b4 b0 SPA 0:回路RUN 1:回路STOP	_	BIN 16 位	4000н	S/U
	+14 +15	SPR	设定值	-999999 至 999999	_	实数	0.0	U
	+16 +17	BIAS	偏置	-999999 至 999999	%	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 <u>CT</u> ≦ 32767	S	实数	1.0	U
	+50 +51	DR	变化率限制值	0 至 999999	_	实数	100. 0	U

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

不能由用户进行数据设置。

^{*2:} 指定是否使用设定值(E2)。

^{*3:} 指定是否将上位回路的操作值(MV)用于设定值(E2)。

^{*4:} 回路标签内存和回路标签过去值内存总共占用 128 个字(详见 3.3.1 项)。

指定位	指定位置 符号		名称	推荐范围*1	单位	数据格式	标准值	存储
	©+52 +53	RMAX	比率上限值	-999999 至 999999	_	实数	100. 0	U
回路标签 寄存器*2	+54 +55	RMIN	比率下限值	-999999 至 999999	=	实数	0.0	U
	+56 +57	R_n	比率当前值	(-999999 至 999999)	_	实数	0.0	S
回路标签 过去值 寄存器*2*3	©+96 : +99	_	_	作为工作区由系统使用。	ĺ	_		S
设定值*4	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

*1: 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

不能由用户进行数据设置。

*2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

*3: 回路标签过去值内存的用途如下所述:

指定位置	说明			
© 2+96	控制周期计数器初始化预置标志			
+97	控制周期计数器			
+98	R _{n-1} (上一个值)			
+99	Rn-1 (上.一/「担.)			

当控制由初始状态开始时,数据必须由顺序程序清0。

*4: 当设定值模式(SVPTN)设为"使用 E2"时设定值(E2)有效。

当使用上位回路的 MV 作为设定值(E2)时,应指定设置了上位回路的操作值(MV)的软元件(偏置+12:MV)。

若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。

(特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

(1) 跟踪处理

- (a) 当下列所有条件成立时, 执行跟踪处理:
 - 1) 运算常数的跟踪位(TRK)为1时。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式(MODE)为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = \frac{100}{RMAX - RMIN} \times (SPR - RMIN)$$

(b) 当设定值(E2) 为上回路的操作值(MV), 在上回路中的报警检测禁止(INH)的跟踪标志(TRKF)变为 1。

9 - 51 9 - 51

错误代码: 4100

(2) 变化率限制器

在变化率限制器中执行下列运算并把运算结果存储在当前比率值(Rn)中。

条件	运算等式
$(SPR - R_n) \ge DR$	$R_n = R_{n-1} + DR$
$(SPR - Rn) \leq - DR$	$R_n = R_{n-1} - DR$
$ SPR - R_n < DR$	$R_n = SPR$

(3) 比率运算

比率运算按下述公式执行:

$$BW = \frac{R_n - RMIN}{RMAX - RMIN} \times E1 + BIAS$$

(4) 回路停止处理

- (a) 将报警检测(ALM)的 SPA 设为 1 时,则变为回路停止。如果执行回路停止,将执行下列处理并终止 S. R 指令。
 - 1) BW 保持上一个值。
 - 2) 运算模式 (MODE) 改为 MAN。
- (b) 报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(5) 控制周期判断"。

(5) 控制周期判断

- (a) 若未到达指定的控制周期时,保持BW,终止S.R指令。
- (b) 当指定控制周期到达时, 执行"(6)模式判断"。

(6) 模式判断

根据运行模式(MODE)的设置执行以下处理。

- (a) 当运算模式 (MODE) 为 CAS, CCB 和 CSV 中的任一种时:
 - 1) 当设定值(E2)被指定时,工程值转换按下述等式执行,接下来执行"(2)变化率限制"。

$$SPR = \frac{RMAX - RMIN}{100} \times E2 + RMIN$$

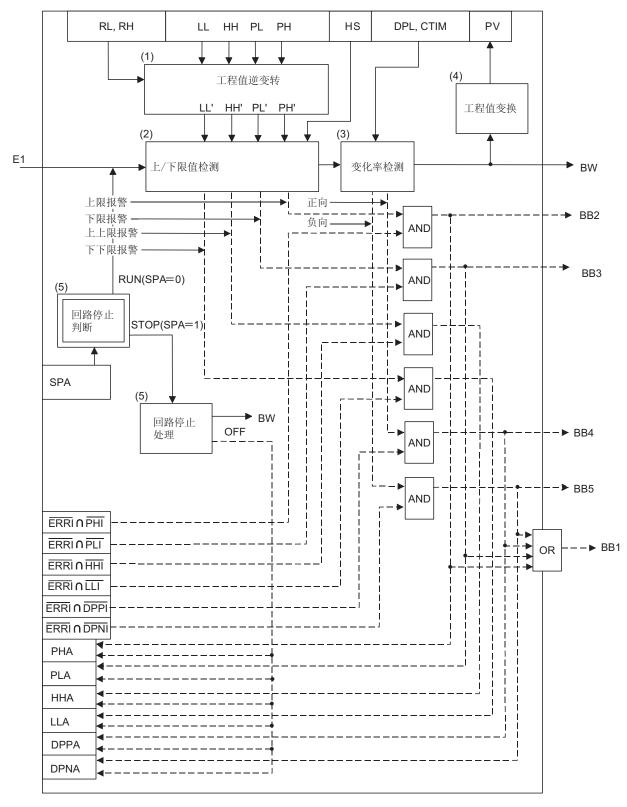

- 2) 当设定值(E2)未被指定时,即使工程值转换未在执行中"(2)变化率限制器"仍可执行。
- (b) 当运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种时,执行"(1) 跟踪处理"。

错误

● 当运算错误发生时

9.8 上/下限报警(S. PHPL)

		可用软元件								
设定 数据	内部软元件 (系统, 用户)					智能功能模	变址寄存器 Zn	常数 K, H	其他	
	位	字	字 位		字	JC 0L 1 (GL 1	<i>L</i> 11	Ν, 11		
§ 1	=	(\circ							
© 1	1	(-					
<u>\$2</u>	1	0		_						
©2	_	(=	=			


*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

对输入值(E1)执行高/低值检测并提供报警输出。

结构图

S. PHPL 指令运算过程的结构框图如下图所示。 (图中(1)至(5)表示处理的顺序。)

控制数据

(1) S. PHPL 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	①+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
块内存	+2	BB BB1 BB2 BB3 BB4 BB5	报警 高值报警 低值报警 正方向变化率报 警 负方向变化率报		_	BIN 16 位	-	S
	© 2+1	MODE	运算模式	0 至 FFFFH b15	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0至 FFFFH b15 b12 b8 b4 b0 S P H L P P D D D P P A A A A A P N A A A A P N A A A A B N A A A A B N A A A B N A A A B N A A A B N A A A B N A A A B N A A B N A A B N A A B N A A B N A A B N A A B N A A B N A B N A B N A A B N A B	_	BIN 16 位	4000н	S/U
回路报警 寄存器* ²	+4	INH	报警检测禁止	0至FFFFH b15 b12 b8 b4 b0 E R R I I I I I P P D D D I I I I I I P P N I I I I I I I I I I I	_	BIN 16 位	4000н	S/U
	+10 +11	PV	测定量	(RL 至 RH)	_	实数	0.0	S
	+22 +23	RH	工程值上限值	-999999 至 999999	_	实数	100. 0	U
	+24 +25	RL	工程值下限值	-999999 至 999999	_	实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。

用户不能设定该参数。

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

指定位	指定位置		名称	推荐范围*1	单位	数据格式	标准值	存储
	©2+26 +27	PH	上限报警设定值	RL 至 RH	I	实数	100. 0	U
	+28 +29	PL	下限报警值	RL至RH	l	实数	0.0	U
	+30 +31	НН	上上限报警值	RL至RH	1	实数	100.0	U
回路标签 寄存器*2	+32 +33	LL	下下限报警值	RL 至 RH	l	实数	0.0	U
	+40 +41	HS	上/下限报警滞后	0至999999	%	实数	0.0	U
	+42 +43	CTIM	变化率报警检查时 间	0 至 999999 注意 CTIM ≤ 32767	s	实数	0.0	U
	+44 +45	DPL	变化率报警值	0至100	%	实数	100.0	U
回路标签 过去值 内存*2 *3	©+96 : +127	_	_	由系统作为工作区域使用。	_	_	_	S

*1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。

用户不能设定该参数。

*2: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

*3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明
©2 +124	变化率监视器计数器初始化预置标志
+125	变化率监视器计数器
+126	Eln⊣m
+127	Eln-m

此外,当从初始状态开始控制时,必须通过顺序程序进行数据清除。

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

(1) 工程值逆转换

为了使上限报警值(PH)、下限报警值(PL)、上上限报警值(HH)和下下限报警值(LL)的范围与输入值(E1)一致,执行下述运算。

$$PH' = \frac{100}{RH - RL} \times (PH - RL), \qquad PL' = \frac{100}{RH - RL} \times (PL - RL)$$

$$HH' = \frac{100}{RH - RL} \times (HH - RL), \qquad LL' = \frac{100}{RH - RL} \times (LL - RL)$$

(2) 上/下限检查

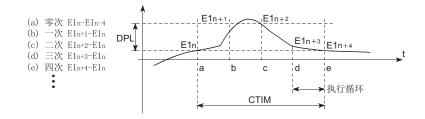
以下述条件执行输入值(E1)的上/下限检查:

检查项目	条件	ALM	BB2	BB3
	E1 > PH'	PHA = 1 *1	1 *1	
上限检查	E1 ≦ PH'—HS	PHA = 0	0	-
	其他	PHA: 保持上一个值*1	保持*1	-
	E1 < PL'	PLA = 1 *2	1	1 *2
下限检查	E1 ≧ PL' +HS	PLA = 0	1	0
	其他	PLA:保持上一个值*2	I	保持*2
	E1 > HH'	нна = 1 *3		_
上上限检查	E1 ≦ HH' −HS	HHA = 0		_
	其他	HHA:保持上一个值*3	I	_
	E1 < LL'	LLA = 1 *4	ı	
下下限检查	E1 ≧ LL' +HS	LLA = 0		_
	其他	LLA: 保持上一个值*4		_

- *1: 当报警检测禁止(INH)的 PHI 或 ERRI 为 1 时,此时由于报警被禁止,PHA 和 BB2 将变为 0。
- *2: 当报警检测禁止(INH)的 PLI 或 ERRI 为 1 时,此时由于报警被禁止,PLA 和 BB3 将变为 0。
- *3: 当报警检测禁止(INH)的 HHI 或 ERRI 为 1 时,此时由于报警被禁止,HHA 将变为 0。
- *4: 当报警检测禁止(INH)中的 LLI 或 ERRI 为 1 时,此时由于报警被禁止,LLA 将变为 0。

(3) 变化率检测

(a)在CTIM中的指定时间里执行变化率检测。


变化率检测的次数由下式决定:

$$m = \frac{CTIM}{\Delta T}$$

m变化范围为1至m。

然而, 当m = 0(积分部分)时, 不执行任何处理。

比如: 当 m = 4, 处理如下图所示:

错误代码: 4100

(b) 在每个执行周期(ΔT)中对输入数据的变化与变化率报警值(DPL)进行比较。

检测项目	条件	ALM	BB4	BB5
	$E1_{n+m}-E1_n \ge DPL$	$DPPA = 1^{*1}$	1 *1	_
】 变化率检测	其他	DPPA = 0	0	_
文化学位例	$E1_{n+m}-E1_n \leq -DPL$	DPNA = 1 *2	_	1 *2
	其他	DPNA = 0	_	0

*1: 当报警检测禁止(INH)的 DPPI 或 ERRI 为 1 时,此时由于报警被禁止,DPPA 和 BB4 将变为 0。

*2: 当报警检测禁止(INH)的 DPNI 或 ERRI 为 1 时,此时由于报警被禁止,DPNA 和 BB5 将变为 0。

(4) 工程值变换

工程值变换按下述等式执行:

$$PV = \frac{RH - RL}{100} \times E1 + RL$$

(5) 回路停止处理

(a) 报警检测(ALM)中的 SPA 设为 1 则选择回路停止。 回路停止执行下列操作并终止 S. PHPL 指令:

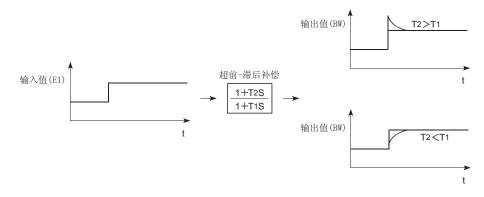
1) 工程值反变换按下述等式执行:

$$BW = \frac{100}{RH - RL} \times (PV - RL)$$

- 2) BB的BB1至BB5变为0。
- 3) 报警检测(ALM)的 DPNA, DPPA, LLA, HHA, PLA 和 PHA 变为 0。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(1)工程值反变换"。

错误

● 当运算错误发生时


9.9 超前-滞后(S. LLAG)

					可用软元件						
设定 数据					MELSECNET/H 直接 JC 3\C3		变址寄存器 Zn	常数 K, H	其他		
	位	字		位	字	- 块 UC]\GC]	ZII	к, п			
§ 1	-	(0		=						
© 1	-	()	-							
<u>\$2</u>	_	(0		-						
(D2)	_	()			=	_				

功能

按照运算常数设定的滞后时间和超前时间以及起动信号(e1)执行超前-滞后运算。

错误代码: 4100

控制数据

(1) S. LLAG 指令中指定的数据

指定位置	Ē	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
输入数据	+2	e1	起动信号	b15 b12 b8 b4 b0 e 1 0: 有超前-滞后补偿 1: 无超前-滞后补偿	_	BIN 16 位		U
块内存	©1)+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
运算常数	\$2+0 +1	T1	滞后时间	0 至 999999	S	实数	1.0	U
心 开 市 奴	+2 +3	T2	超前时间	0 至 999999	S	实数	1. 0	U
本地工作 内存*2	©2+0 +1	E1n-1	上一个输入值	作为工作区域由系统使用	_	实数	_	S

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

(2) 执行周期(**∆**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

S. LLAG 执行下述运算:

条件	BW(输出值)						
e1 = 0	$BW = \frac{1}{T_1 + \Delta T} \times \{T_2 \times (E1 - E1_{n-1}) + T_1 \times (BW 上 - $						
e1 = 1	BW = E1 (输出值等于输入值, 无变化)						

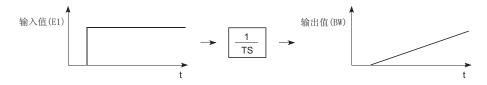
错误

● 当运算错误发生时

9 - 60 9 - 60

不能由用户进行数据设置。 *2: 当从初始状态开始控制时,必须通过顺控程序进行数据清除。

9.10 积分(S.I)


		可用软元件									
		软元件 、用户) 文件寄存器		MELSECNET/H 直接 J[]\[]		智能功能模-块 U[]\G[]	变址寄存器 Zn	常数 K, H	其他		
	位	字		位	字		ZII	к, п			
§ 1	-	(0		=						
© 1	-	()	_							
<u>\$2</u>	_	(0								
(D2)	_	()			=	=				

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

根据动作控制信号(e1)执行积分运算。

使用数据

(1) S. I 指令中指定的数据

指定位置	Ĩ.	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数	_	U
输入数据	+2	el	运算控制信号	b15 b12 b8 b4 b0 0: 有积分运算 1: 无积分运算	ı	BIN 16 位		U
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	I	实数	_	S
运算常数	\$2+0 +1	T	积分时间	0至 999999	S	实数	1.0	U
心开巾奴	+2 +3	Ys	输出初始值	-999999 至 999999		实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

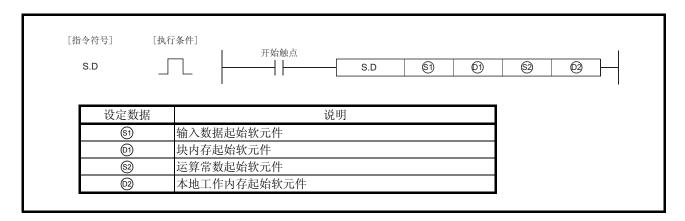
(2) 执行周期(**Δ**T)

将执行周期以实数设定到 SD1500 和 SD1501 中。

处理内容

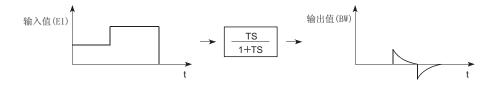
S. I 指令执行下述运算:

e1	T	BW
0	≠ 0	$BW = Y_n = \frac{\Delta T}{T} \times E1 + Y_{n-1}$
0	0	$BW = Y_{n-1}$
1	_	$BW = Y_s$


E1: 当前输入值, ΔT: 执行周期, Yn: 当前输出值, Yn-1: 上一个输出值

错误

● 当运算错误发生时 错误代码: 4100


9.11 微分(S.D)

		可用软元件									
设定 数据		次元件 用户)	文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其他		
	位	字		位	字	好 ひこ 」 (ひこ)	ZII	Ν, П			
S 1	-		0		=						
© 1	1	(-							
<u>\$2</u>	1	0		_							
© 2	_					-	_				

功能

按运算控制信号(e1)执行微分运算。

错误代码: 4100

使用数据

(1) S.D 指令中指定的数据

指定位置	乱	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数		U
输入数据	+2	e1	动作控制信号	b15 b12 b8 b4 b0 e 1 0: 有微分运算 1: 无微分运算	_	BIN 16 位	1	U
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	_	实数	_	S
云質贵 粉	\$2+0 +1	T	微分时间	0至999999	S	实数	1. 0	U
映內存 +1 bw 搁出值 \$\old{\text{\$\old{B}}}\rm 10 T 微分时间	输出初始值	-999999 至 999999	_	实数	0.0	U		
本地工作 寄存器*2	©2+0 +1	E1n-1	上一个输入值	作为工作区域由系统使用	_	实数	_	S

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

(2) 执行周期(**Δ**T)

将执行周期以实数设定到 SD1500 和 SD1501 中。

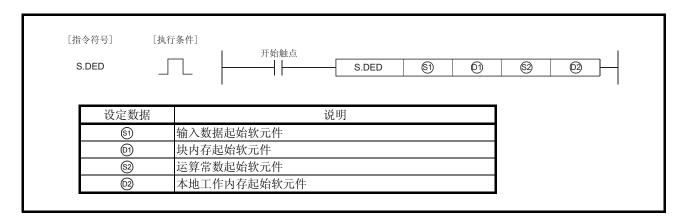
处理内容

S. D 指令执行下述运算:

e1	BW
0	$BW = \frac{T}{T + \Delta T} \times (Y_{n-1} - E1_{n-1} + E1)$
	注意 $T + \Delta T = 0$, $BW = 0$.
1	$BW = Y_s$

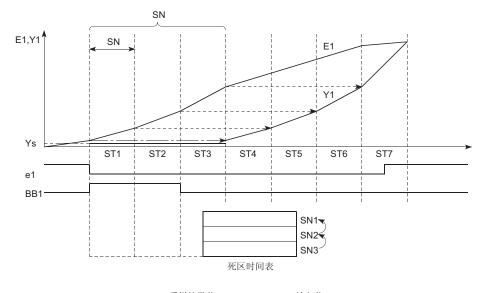
E1: 当前输入值, ΔT: 执行周期, Yn: 当前输出值, Yn-1: 上一个输出值

错误


● 当运算错误发生时

不能由用户进行数据设置。

^{*2:} 当从初始状态开始控制时,必须通过顺控程序进行数据清除。


9.12 空载时间(S.DED)

					可用软元件						
设定 数据					MELSECNET/H 直接 JC 3\C 3		变址寄存器 Zn	常数 K, H	其他		
	位	字		位	字	- 块 UC]\GC]	ZII	Ν, 11			
§ 1	_	(0		=						
© 1		(_							
<u>\$2</u>	I	(0								
(D2)	_	(=	=				

功能

按照动作控制信号(e1)将输入值(E1)延迟一个空载时间后输出。

SN: 采样计数值 ST: 数据采集间隙 E1: 输入值 Ys: 输出初始值

(1) S. DED 指令中指定的数据

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数	_	U
输入数据	+2	el	动作控制信号	b15 b12 b8 b4 b0 e 1 1 constitution of a few sets of the few	_	BIN 16 位	_	U
	©1)+0 +1	BW	输出值	(-999999 至 999999)	_	实数	_	S
		BB		_				
块内存	+2	BB1	数据充足位	b15 b12 b8 b4 b0 B B B 1 1 (0: 数据充分) (1: 数据不充分)		BIN 16 位	l	S
	\$2+0 +1	ST	数据采集间隔	0 至 999999 注意 <u>ST</u> ≦ 32767	S	实数	1. 0	U
	+2	SN	采样计数值	0 至 48	_	BIN 16 位	0	U
\ ketr 244 444	+3 +4	Ys	输出初始值	-999999 至 999999	_	实数	0.0	U
运算常数	+5	OCHG	输出切换	b15 b12 b8 b4 b0 C C H H G C C H H G C C H H G C C H H G C C H H G C C C C	_	BIN 16 位	0	U
本地工作	+1 +2 +3 +4		上一个输入值 (e1') 周期计数器 死区时间表存 储数据的个数 死区时间表 1					
寄存器*2	+5 +6 : +2SN +1 +2SN +2	_	死区时间表 2 : 死区时间表 SN	作为工作区域由系统使用。	_	_		S

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。

用户不能设定该参数。

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

^{*2:} 当控制由初始状态开始时,数据必须由顺控程序清 0。

处理内容

(1) 在 S. DED 指令中执行下述运算:

e1	OCHG	死区时间	BW
1	0/1	None	E1 _
	0		到达 SN 的 次数 E1 当 e1 从 1 变为 0 时
1→0	U	ST × SN	未到 SN 的 次数 最早的数据*1
1-70	1	21 ~ 21/	到达 SN 的 次数 Ys
	1		未到 SN 的 次数 最早的数据*1
0-0	0/1	ST × SN	最早的数据*1

*1: 最早的数据是指第 SN 个后的 E1。

- 当未达到空载时间表数据时,BB1 的值将变为 1。
- 当 SN = 0 时, BB1 = 0 且 BW=E1。

错误

● 当发生运算错误时

错误代码: 4100 ● 当采样计数值超出 0 至 48 的范围时 错误代码: 4100

9 - 67 9 - 67

9.13 高值选择器(S.HS)

					可用软元件				
设定 数据		次元件 用户)	文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	好 ひこ 」 (ひこ)	ZII	Ν, П	
S 1	-					=	=		
© 1	1	(=	=		
<u>\$2</u>	1					=	=		
© 2	_					-	_		

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

输出值为输入值 1(E1)至 n(En)中的最大值。

(1) S. HS 指令中的数据定义

指定位置	乱	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	S1 +0	n	输入计数值	1至16	I	BIN 16 位		U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值 2	-999999 至 999999	_	实数	_	U
	:	:	:					
	+2 _n -1 +2 _n	En	输入值 n					
块内存	©1+0 +1	BW	输出值	(E1 至 En 中的最大值)		实数		S
	+2	BB		<u> </u>				
		BB1 ~ BB16	输出选择	b15 b12 b8 b4 b0	1	BIN 16 位	Ī	S

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。

处理内容

(1) 高值选择器处理

输入值 1(E1)至 n(En)中的最大值存储至 BW。

BB 的 BB1 至 BB16 中对应于最大值的那一位亦变为 1。

输入值	E16	E15	E14	至	E2	E1
取为最大值时变为1的位	BB16	BB15	BB14	至	BB2	BB1

- (a) 若存在 2 个或多个最大值,则对应于最大值的所有位全部变为 1。
- (b) 若只有1路输入,则:
 - 1) 当仅有 E1 用作输入值时:
 - E1 存储至 BW。
 - BB 的 BB1 变为 1。
 - BB 的 BB2 至 BB16 变为 0。
 - 2) 当仅有 E2 至 E16 其中之一用作输入值时:
 - E2 至 E16 的输入值和 E1 的数据用来执行处理。

错误

● 当运算错误发生时 错误代码: 4100

● 当不满足 1 ≦ 输入个数 (n) ≦ 16 时 错误代码: 4100

9.14 低值选择器(S.LS)

					可用软元件				
设定 数据		次元件 用户)	文件寄存器		MELSECNET/H 直接 J[]/[]		变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	块 UE]\GE]	ZII	к, п	
S 1	_					=	=		
© 1		(=	=		
<u>\$2</u>	I					=	=		
© 2	_					-	_		

*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

对输入值 1(E1)至 n(En)中的最小值进行输出。

(1) S. LS 指令中指定的数据

指定位置	乱	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	S1 +0	n	输入计数值	1至16	_	BIN 16 位		U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值 2	-999999 至 999999	_	实数	_	U
	÷	:	:					
	+2 _n -1 +2 _n	En	输入值 n					
	©1+0 +1	BW	输出值	(E1 至 En 中的最小值)	_	实数		S
	+2	BB		<u> </u>				
块内存		BB1 ~ BB16	输出选择	b15 b12 b8 b4 b0	Ι	BIN 16 位	1	S

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。

处理内容

(1) 低值选择器处理

输入值 1(E1)至 n (En)中的最小值存储至 BW。

此外,将对应于最小值的 BB 的 BB1 至 BB16 变为 1。

输入值	E16	E15	E14	至	E2	E1
取为最小值时变为1的位	BB16	BB15	BB14	至	BB2	BB1

- (a) 若存在 2 个或多个最小值,则对应于最小值的所有位全部变为 1。
- (b) 若只有1路输入,则:
 - 1) 当仅有 E1 用作输入值时:
 - E1 存储至 BW。
 - BB 的 BB1 变为 1。
 - BB 的 BB2 至 BB16 变为 0。
 - 2) 当仅有 E2 至 E16 其中之一用作输入值时:
 - E2 至 E16 的输入值和 E1 的数据用来执行处理。

错误

● 当运算错误发生时 错误代码: 4100

● 当不满足 1 ≦ 输入个数 (n) ≦ 16 时 错误代码: 4100

9 - 71 9 - 71

9.15 中值选择器(S.MID)

					可用软元件							
设定 数据		次元件 用户)					变址寄存器 Zn	常数 K、H	其他			
	位	字		位	字	- 块 UC]\GC]						
S 1	-	()									
© 1	-	()			-	_					
<u>\$2</u>	_	(•	•	-	_					
(D2)	_	(=	=					

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

在输入值(E1)至输入值n(En)中,输出最大值和最小值之间的中间值。

(1) S. MID 指令中的数据定义

指定位	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	§1)+()	n	输入计数值	1至16	_	BIN 16 位		U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值2	-999999 至 999999	_	实数	_	U
	÷	:	:					
	+2 _{n-1} +2 _n	En	输入值 n					
块内存	①+0 +1	BW	输出值	(在最大值和最小值之间的中间值)	_	实数		S
	+2	BB						
		BB1 ~ BB16	输出选择	b15 b12 b8 b4 b0	_	BIN 16 位	ı	S

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。

处理内容

(1) 中值选择器的处理

输入值 1(E1)至 n(En)中的中间值存储至 BW。 BB 的 BB1至 BB16 中对应于中间值的那一位亦变为 1。

输入值	E16	E15	E14	至	E2	E1
取为中间值时变为1的位	BB16	BB15	BB14	至	BB2	BB1

- (a) 若输入个数为偶数, 所有中间值中的较小值被存储。
- (b) 若存在 2 个或多个中间值,则将对应于中间值的所有位全部变为 1。

错误代码: 4100

注意

中值的选择如下所述:

- 1) 将输入值 1(E1) 至输入值 n(En) 按升序排序。 (若有相同的输入值,则按其对应的输入先后顺序排列。)
- 2) 在排序后的值中选择中间值。
- 例) 当输入数据为 2、5、1、4 和 3 时,中间值的选择如下所述:

在上述情况下,中值为"3"且BB5变为1。

错误

● 当发生运算错误时

● 当不满足 1 ≤ 输入个数 (n) ≤ 16 时 错误代码: 4100

9.16 均值(S.AVE)

					可用软元件				
设定 数据		欠元件 用户) 文件寄存器 字					变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	- 块 UC]\GC]	ZII	Ν, 11	
§ 1	_	()			=	=		
© 1	ı	(=	=		
<u>\$2</u>		(•	-	_		
©2	ı	(=	=		

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

计算并输出输入值 1(E1)至 n(En)的均值。

(1) S. AVE 指令中指定的数据

指定位	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0	n	输入计数值	1至16	l	BIN 16 位		U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值2	-999999 至 999999	_	实数	_	U
	:	:	:					
	+2 _{n-1} +2 _n	En	输入值 n					
块内存	①+0 +1	BW	输出值	(E1 至 En 的均值)	_	实数	_	S

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

处理内容

(1) 均值的计算

计算出输入值 1(E1) 至输入值 n(En) 的平均值。 分母(N)使用输入计数数值(n)中指定的值。

$$BW = \frac{E1 + E2 + E3 + \cdots E_n}{N}$$

错误

● 当运算错误发生时

● 当不满足 1 ≦ 输入个数 (n) ≦ 16 时

错误代码: 4100 错误代码: 4100

9 - 76 9 - 76

9.17 上/下限限制器(S.LIMT)

					可用软元件				
设定 数据	内部软元件 (系统,用户) 位 字		文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其他
	位	字		位	字	好 ひこ 」 (ひこ)	ZII	Ν, П	
S 1	-					=	=		
© 1	1	(_					
<u>\$2</u>	1		0			=	=		
© 2	_		0			-	_		

*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

高值和低值限制器用来给输出值加入一段时间的滞后。

(1) S. LIMT 指令中指定的数据

指定位置	置.	符号	名称	推荐范围*1	单位	数据格式	标准值	存储	
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U	
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S	
		BB		_					
块内存	+2	BB1	上限报警	b15 b12 b8 b4 b0 B B B B B 2 1	_	BIN	_	S	
		8.0	BB2	下限报警	(0: 无报警) (1: 报警)		16 位		
	\$2+0 +1	HILMT	高值**	-999999 至 999999	%	实数	100. 0	U	
运算常数	+2 +3	LOLMT	低值*2	-999999 至 999999	%	实数	0.0	U	
心开巾奴	+4 +5	HS1	高值滯后	0至999999	%	实数	0.0	U	
	+6 +7	HS2	低值滞后	0至999999	%	实数	0.0	U	

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

处理内容

(1) S. LIMT 指令执行下述运算:

条件	BW	BB1	BB2
E1 ≧ HILMT	HILMT	1	0
(LOLMT + HS2) < E1 < (HILMT - HS1)	E1	0	0
E1 ≦ LOLMT	LOLMT	0	1
除上述外的其他条件(滞后选择)	E1	上一个值	上一个值

错误

● 当运算错误发生时

● 当HS1 < 0 或 HS2 < 0 时

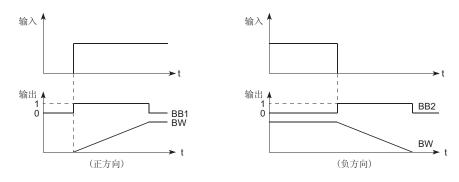
错误代码: 4100 错误代码: 4100

9 - 78 9 - 78

不能由用户进行数据设置。

^{*2:} 设定时需满足 HILMT ≧ LOLMT 的条件。

9.18 变化率限制器 1(S. VLMT1)


					可用软元件						
设定 数据			文件寄存器		CNET/H J[]\[]	智能功能模块 [[]] \(\mathcal{G}_{\mathcal{L}}\)	变址寄存器 Zn	常数 K、H	其他		
	位	字		位	字	好 ひょうしひょう	ZII	Λ, П			
S1	1	(-						
© 1	1	(_							
S 2	1	(0		_						
(D2)	_	(0			-	_				

*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

对输出值的变化速度设置限制。

(1) S. VLMT1 指令中的数据定义

指定位置			符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	Е	1	输入值	-999999 至 999999	%	实数		U
	©1+0 +1	В	W	输出值	(-999999 至 999999)	%	实数	_	S
		В	В		-				
块内存	+2		BB1	正向限制报警	b15 b12 b8 b4 b0 BBBBB2 1 (0: 无报警) (1: 报警)		BIN 16 位	Ι	S
	\$2+0 +1	V	1	正向限制值	0 至 999999	%/s	实数	100. 0	U
运算常数	+2 +3	V	2	负向限制值	0至 999999	%/s	实数	100. 0	U
色开市奴	+4 +5	Н	S1	正向滞后	0至 999999	%	实数	0.0	U
	+6 +7		S2	负向滞后	0至999999	%	实数	0.0	U

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

(1) S. VLMT1 指令执行下述运算:

	输入(E1 - BW)	BW	BB1	BB2
正向	$(E1 - BW) \ge (V1 \times \Delta T)$	$BW = BW + V1 \times \Delta T$	1	0
正四 当 E1 ≧ BW 时	$(E1 - BW) < (V1 \times \Delta T - HS1)$	BW = E1	0	0
∃ E1 ₹ D# H1	其他	BW = E1	上一个值	上一个值
A.白	$(BW - E1) \ge (V2 \times \Delta T)$	$BW = BW - V2 \times \Delta T$	0	1
负向 当 E1 < BW 时	$(BW - E1) < (V2 \times \Delta T - HS2)$	BW = E1	0	0
∃ EI ✓ DW HJ	其他	BW = E1	上一个值	上一个值

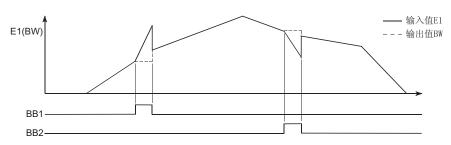
错误

● 当运算错误发生时

错误代码: 4100 ● 当HS1 < 0 或 HS2 < 0 时 错误代码: 4100

9 - 80 9 - 80

9.19 变化率限制器 2(S. VLMT2)


				可用软元件							
设定 数据	数据 (系统、用户)		用户) 文件寄存器		MELSECNET/H 直接 J[]\[]		变址寄存器 Zn	常数 K、H	其他		
	位	字			字	. 块 LE]\GE]	ZII	N, 11			
§ 1	_	(_						
(1)		(=	=				
<u>\$2</u>	I		0			=	=				
D2	_	(0			=	=				

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

限制输出值的变化速度。

(1) S. VLMT2 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
		BB						
块内存	+2	BB1	正向限制报警	b15 b12 b8 b4 b0 B B B B B 2 1	_	BIN	-	S
		BB2	负向限制报警	(0: 无报警) (1: 报警)		16 位		
	\$2+0 +1	V1	正向限制值	0 至 999999	%/s	实数	100.0	U
运算常数	+2 +3	V2	负向限制值	0至999999	%/s	实数	100.0	U
心开市奴	+4 +5	HS1	正向滞后	0至999999	%	实数	0.0	U
	+6 +7	HS2	负向滞后	0至999999	%	实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

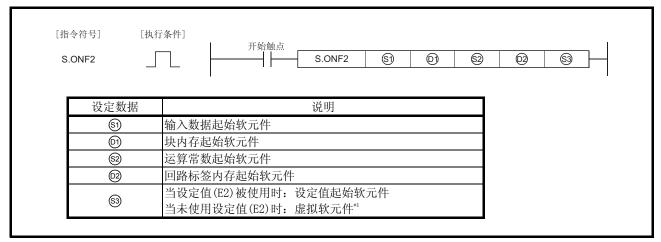
(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

(1) S. VLMT2 指令执行下述运算:

	输入	BW	BB1	BB2
正向	$(E1 - BW) \ge (V1 \times \Delta T)$	BW = BW	1	0
当E1 ≧ BW 时	$(E1 - BW) < (V1 \times \Delta T - HS1)$	BW = E1	0	0
☐ E1 = D# #1	其他	BW = BW	上一个值	上一个值
A. 台	$(BW - E1) \ge (V2 \times \Delta T)$	BW = BW	0	1
负向 当 E1 < BW 时	$(BW - E1) < (V2 \times \Delta T - HS2)$	BW = E1	0	0
☐ E1 < M til	其他	BW = BW	上一个值	上一个值

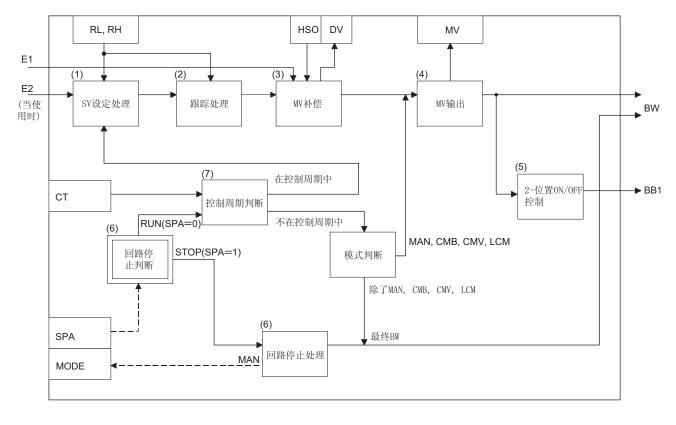

错误

● 当运算错误发生时 错误代码: 4100 ##:3457 ##: 4100

● 当 HS1 < 0 或 HS2 < 0 时 错误代码: 4100

9.20 2位置 ON/OFF (S. ONF2)

					可用软元件							
设定 数据			文件寄存器		MELSECNET/H 直接 J. J. C. J 中 U. J. G. J		变址寄存器 常数		其他			
	位	字			字	— 块 U. J. G. S. J. Zn K、H						
§ 1	-	(0		-							
61		(_								
<u>\$2</u>	ı	(_								
D2	ı	(0			=	=					
§ 3	ı	(=	=					


*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

当到达指定的周期时,执行 2 位置 ON/OFF 控制 (单触点 ON/OFF)。 也同时执行 SV 设定处理、跟踪处理、MV 补偿和 MV 输出处理。

块图

S. 0NF2 指令的处理块图如下所示。 (处理块图的(1)至(7)表示处理内容的说明顺序。)

(1) S. ONF2 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
		BB		_				
块内存	+2	BB1	运算结果	b15 b12 b8 b4 b0 B B B 1 (0: BW < 50%) (1: BW ≥ 50%)	_	BIN 16 位	Ι	S
	\$2+0	PN	运算模式	0: 反向运算 1: 正向运算	_	BIN 16 位	0	U
	+1	TRK	跟踪位	0: 无跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+2	SVPTN	设定值模式	0 至 3 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 位定值模式*3 设定值使用*2 0: E2是上回路MV 0: E2被使用 1: E2不是上回路MV 1: E2没有被使用	_	BIN 16 位	3	U
	©2+1	MODE	运算模式	0 至 FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
回路标签 内存**	+3	ALM	报警检测	0至 FFFF ^H b15 b12 b8 b4 b0 SPA 0: 回路RUN 1: 回路STOP	_	BIN 16 位	4000н	S/U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 无论设定值(E2)是否被使用都可指定。

^{*3:} 同设定值(E2), 无论上回路的操作值(MV)是否被使用都可指定。

^{*4:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3.3.1 节。)

指定位置	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	© 2+4	INH	报警检测禁止	0至FFFFH b15 b12 b8 b4 b0 R K F		BIN 16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U
回路标签 内存*2	+14 +15	SV	设定值	RL 至 RH	_	实数	0.0	U
NIT	+16 +17	DV	偏差	(-110 至 110)	%	实数	0.0	S
	+18 +19	HS0	滞后	0 至 999999	_	实数	0.0	U
	+22 +23	RH	工程值上限	-999999 至 999999	_	实数	100.0	U
	+24 +25	RL	工程值下限	-999999 至 999999	_	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 CT ≤ 32767	S	实数	1.0	U
回路标签 过去值	+96			作为工作区域由系统使用。	_	_	_	S
寄存器*2 *3	+97							
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1: 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。
 - 不能由用户进行数据设置。
- *2: 回路标签内存和回路标签过去值内存总共占用 128 个字。(详见 3.3.1 项。)
- *3: 回路标签过去值内存的应用如下所述:

指定位置	说明
©2+96	控制周期计数器初始化预置标志
+97	控制周期计数器

当从初始状态开始控制时,必须通过顺控程序进行数据清除。

*4: 当设定值模式(SVPTN)设为"E2被使用"时设定值(E2)有效。

当使用上回路的 MV 作为设定值(E2)时,指定软元件使得在其中上回路的操作值(MV)可以设定(偏移 + 12: MV)。

若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。 (特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

9 - 869 - 86

处理内容

(1) SV 设定处理

下述处理取决于运算模式(MODE)的设置。

- (a) 当运行模式 (MODE) 为 CAS、CCB 和 CSV 中的任一种时:
 - 1) 当设定值(E2)被指定时, 工程值转换按下述等式执行, 接下来执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当未指定设定值(E2)时,将在未执行工程值转换的状况下进行"(2)跟踪处理"。。
- (b) 当运行模式 (MODE) 为 MAN、AUT、CMV、CMB、CAB、LCM、LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 将设定值(SV) 通过下列运算公式进行工程值逆转换以计算出 SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当下列所有条件成立时, 执行跟踪处理:
 - 1) 运算常数的跟踪位(TRK)为1。
 - 2) 设定值(E2)被使用。
 - 3) 运算模式 (MODE) 为 MAN, AUT, CMV, CMB, CAB, LCM, LCA 和 LCC 中的任一种。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上位回路的操作值(MV)时,上位回路的报警检测禁止(INH)的跟踪标志(TRKF)将变为1。

(3) MV 补偿

当偏差(DV)由输入值(E1)和跟踪处理(SVn')后的设定值进行计算之后,计算 MV 补偿值(MV')。

(a) 偏差 (DV) 的计算

偏差(DV)在下列条件下进行计算:

条件	DV
正向运算	E1 — SVn'
(PN = 1)	
反向运算	SVn' — E1
(PN = 0)	

(b) MV 补偿值(MV')的计算

MV 补偿值(MV')在下列条件下进行计算:

条件	MV'
DV ≧ HSO	100%
$DV \leq -HS0$	0%
- HSO < DV < HSO	上一个值(BW值)

错误代码: 4100

(4) MV 输出

根据下列条件对操作值(MV(BW))进行计算:

条件	BW
CMV, MAN, CMB, LCM	BW = MVn
CSV, CCB, CAB, CAS, AUT, LCC, LCA	BW = MV' $MVn = BW$

(5) 2-位置 ON/OFF 控制

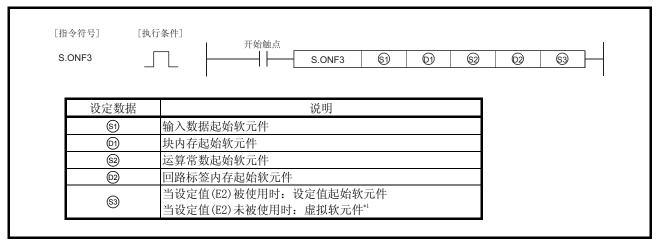
BB的BB1在下列条件下输出:

条件	BB1
BW ≥ 50%	1
BW < 50%	0

(6) 回路停止处理

- (a) 如果将报警检测 (ALM) 的 SPA 设为 1,则执行回路停止。 如果执行回路停止,将进行下列处理并终止 S. 0NF2 指令:
 - 1) BW 和 BB1 均保持上一个值。
 - 2) 运算模式 (MODE) 改为 MAN。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(7)控制周期判断"。

(7) 控制周期判断

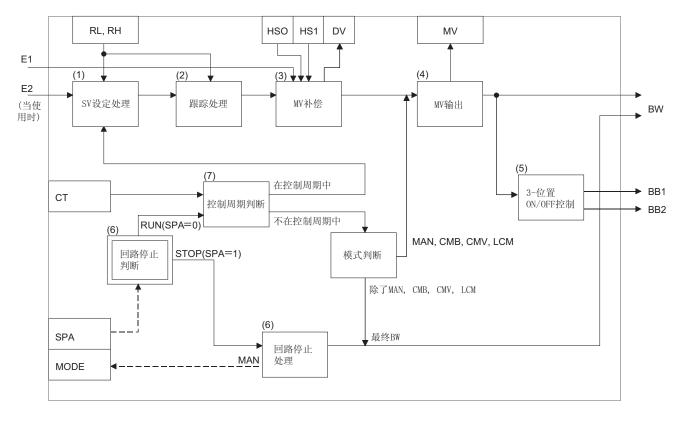

- (a) 未到达指定的控制周期时:
 - 1) 当运算模式 (MODE) 为 CSV, CCB, CAB, CAS, AUT, LCC 和 LCA 中的任一种时, BW 保持, S. ONF2 指令终止。
 - 2) 当运算模式 (MODE) 为 MAN, CMB, CMV 和 LCM 中的任一种时, BW 等于 MV, 并执行"(5) 2-位置 ON/OFF 控制"的处理。
- (b) 当指定控制周期到达时, 执行"(1)SV设定处理"。

错误

● 当运算错误发生时

9.21 3 位 ON/OFF (S. ONF3)

	可用软元件									
设定 数据	内部软元件 (系统、用户)				MELSECNET/H 文件寄存器 直接 J[]\[[]		智能功能模	变址寄存器 Zn	常数 K、H	其他
	位	字		位	字	灰 (L1/GL1	ZII	N 11		
§ 1	=	()	_						
© 1	I	0		_						
<u>\$2</u>	I					=	=			
©2	_	0			•	=	=			
§ 3	_	0				=	_			


*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

当指定周期到达时执行 3 位置 ON/OFF 控制 (2 触点 ON/OFF)。 亦可同时执行 SV 设定处理,跟踪处理,MV 补偿和 MV 输出处理。

结构图

S. ONF3 指令的处理块图如下所示。 (处理块图的(1)至(7)表示处理内容的说明顺序。)

(1) S. ONF3 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数		U
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
		BB		_				
块内存	+2	BB1	运算结果	b15 b12 b8 b4 b0 BBBBBBC2 1		BIN		٥
		BB2	运算结果	(0, 0: 25%≦BW<75%) (0, 1: BW<25%) (1, 0: BW≧75%)	l	16 位		S
	\$2 +0	PN	运算模式	0: 反向运算 1: 正向运算	_	BIN 16 位	0	U
	+1	TRK	跟踪位	0: 无跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+2	SVPTN	设定值模式	0 至 3 b15 b12 b8 b4 b0 b15 b12 b8 b4 b0 位 位 位 位 位 位 位 位 位 位 位 位 位 位 位 位 位 位 位	-	BIN 16 位	3	Ū
	©2 +1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M		BIN 16 位	8н	S/U
回路标签 内存**	+3	ALM	报警检测	0至 FFFFH b15 b12 b8 b4 b0 SPA 0: 回路RUN 1: 回路STOP		BIN 16 位	4000н	S/U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

9 - 919 - 91

^{*2:} 无论设定值(E2)是否被使用都可指定。

^{*3:} 同设定值(E2),无论上回路的操作值(MV)是否被使用都可指定。 *4: 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	@+4	INH	报警检测禁止	0 至 FFFF ^H b15 b12 b8 b4 b0 TRKF (0: 无跟踪) (1: 跟踪)	_	BIN 16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U
回路标签	+14 +15	SV	设定值	RL 至 RH	_	实数	0.0	U
内存*2	+16 +17	DV	偏差	(-110 至 110)	%	实数	0.0	S
	+18 +19	HS0	滞后 0	0 至 999999	_	实数	0.0	U
	+20 +21	HS1	滞后1	0 至 999999	_	实数	0.0	U
	+22 +23	RH	工程值上限	-999999 至 999999	_	实数	100. 0	U
	+24 +25	RL	工程值下限	-999999 至 999999	_	实数	0.0	U
	+46 +47	CT	控制周期	0 至 999999 注意 <u>CT</u> ≦ 32767	S	实数	1. 0	U
回路标签 过去值 内存* ² *3	©+9 6 +97	=	_	由系统作为工作区使用。	_		_	S
设定值**	\$3+0 +1	E2	设定值	-10 至 110	%	实数	0.0	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。
- *2: 回路标签内存和回路标签过去值内存总共占用 128 个字。(详见 3. 3. 1 项。)
- *3: 回路标签过去值寄存器的应用如下所述:

指定位置	说明
@+96	控制周期计数器初始设置结束标志
+97	控制周期计数器

当控制由初始状态开始时,数据必须由顺序程序清0。

*4: 当设定值模式(SVPTN)设为"使用 E2"时设定值(E2)有效。

当使用上位回路的 MV 作为设定值(E2)时,应指定设置了上位回路的操作值(MV)的软元件(偏置+12: MV)。

若不使用 E2 作为设定值时,请务必指定一个虚拟软元件。

(特殊寄存器 SD1506 可被指定为虚拟软元件。)

(2) 执行周期(**Δ**T)

在 SD1500 和 SD1501 中执行周期设定为实数。

处理内容

(1) SV 设定处理

下述处理取决于运算模式(MODE)的设置。

- (a) 当运算模式 (MODE) 为 CAS, CCB 和 CSV 中的任一种时:
 - 1) 当设定值(E2)被指定时,工程值转换按下述等式执行,接下来执行"(2)跟踪处理"。

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) 当未指定设定值(E2)时,将在未执行工程值转换的状况下执行"(2)跟踪处理"。
- (b) 当运行模式 (MODE) 为 MAN、AUT、CMV、CMB、CAB、LCM、LCA 和 LCC 中的任一种时, 执行"(2) 跟踪处理"。

(2) 跟踪处理

(a) 将设定值(SV) 通过下列运算公式进行工程值逆转换以计算出 SVn':

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) 当下列所有条件成立时, 执行跟踪处理:
 - 1) 运算常数的跟踪位(TRK)为1时。
 - 2) 设定值(E2)被使用。
 - 3) 运行模式(MODE)为 MAN、AUT、CMV、CMB、CAB、LCM、LCA 和 LCC 中的任一种时。

$$E2 = SVn'$$

(c) 当设定值(E2) 为上位回路的操作值(MV) 时,上位回路的报警检测禁止(INH)的跟踪标志 (TRKF) 将变为 1。

(3) MV 补偿

当根据输入值(E1)和跟踪处理后的设定值(SVn')计算出偏差(DV)后,计算MV补偿值(MV')。

(a) 偏差(DV) 的计算

根据下列条件计算出偏差(DV):

条件	DV
正向运算	E1 — SVn'
(PN = 1)	
反向运算 (PN = 0)	SVn' — E1
(PN = 0)	

(b) MV 补偿值(MV')的计算

根据下列条件对 MV 补偿值(MV')进行计算:

条件	MV'
$DV \ge (HS1 + HS0)$	100%
$DV \leq - (HS1 + HS0)$	0%
(- HS1 + HS0) < DV < (HS1 - HS0)	50%
除以上条件外	上一个值(BW的值)

(4) MV 输出

操作值(MV(BW))在下列条件下进行计算:

条件	BW
CMV, MAN, CMB, LCM	BW = MVn
CSV, CCB, CAB, CAS, AUT, LCC, LCA	BW = MV' MVn = BW

(5) 3-位置 ON/OFF 控制

BB的 BB1和BB2在下列条件下输出:

条件	BB1	BB2
BW ≧ 75%	1	0
$25\% \leq BW < 75\%$	0	0
BW < 25%	0	1

(6) 回路停止处理

- (a) 报警检测(ALM)中的 SPA 设为 1 则选择回路停止。 回路停止执行下列操作并终止 S. 0NF3 指令:
 - 1) BW, BB1 和 BB2 均保持上一个值。
 - 2) 将运行模式 (MODE) 置于 MAN。
- (b)报警检测(ALM)中的 SPA 设为 0 则选择回路运行。 回路运行执行"(7)控制周期判断"。

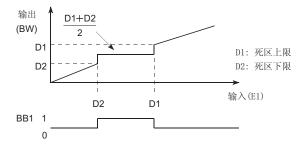
(7) 控制周期判断

- (a) 若指定控制周期未到达时:
 - 1) 当运行模式 (MODE) 为 CSV、CCB、CAB、CAS、AUT、LCC 和 LCA 中的任一种时,保持 BW, 终止 S. ONF3 指令。
 - 2) 当运行模式 (MODE) 为 MAN、CMB、CMV 和 LCM 中的任一种时,BW 等于 MV, 并执行"(5) 3 位置 ON/OFF 控制"。
- (b) 当到达了指定的控制周期时,执行"(1) SV 设定处理"。

错误

● 当运算错误发生时

9.22 死区(S.DBND)


		可用软元件									
设定 数据		次元件 用户)	文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K、H	其他		
	位	字		位	字	好 いっぱい	ZII	И, П			
§ 1	-	()		-						
© 1	-	()			=	=				
<u>\$2</u>	_	- 0			_						
(D2)	-	()			=	_				

*1: 可以将特殊寄存器的 SD1506 指定为虚拟软元件。

功能

设置死区并执行输出处理。

控制数据

(1) S. DBND 指令中指定的数据

指定位置	乱	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999		实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
	BB			_				
块内存	+2	BB1	死区动作	b15 b12 b8 b4 b0 B B B I 1 (0: 在死区范围之外) (1: 在死区范围之内)	_	BIN 16 位	1	S
运算常数	\$2+0 +1	D1	死区上限	-999999 至 999999	_	实数	100.0	U
心 昇币数	+2 +3	D2	死区下限	-999999 至 999999	_	实数	0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

处理内容

(1) 在 S. DBND 指令中执行下列处理:

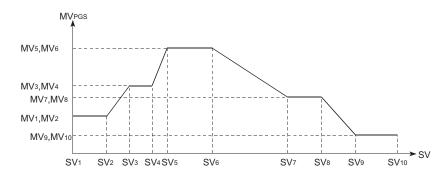
条件	BW	BB1
D2 ≤ E1 ≤ D1	<u>D2+D1</u> 2	1
(E1 < D2) 或 (E1 > D1)	E1	0

错误

● 当运算错误发生时

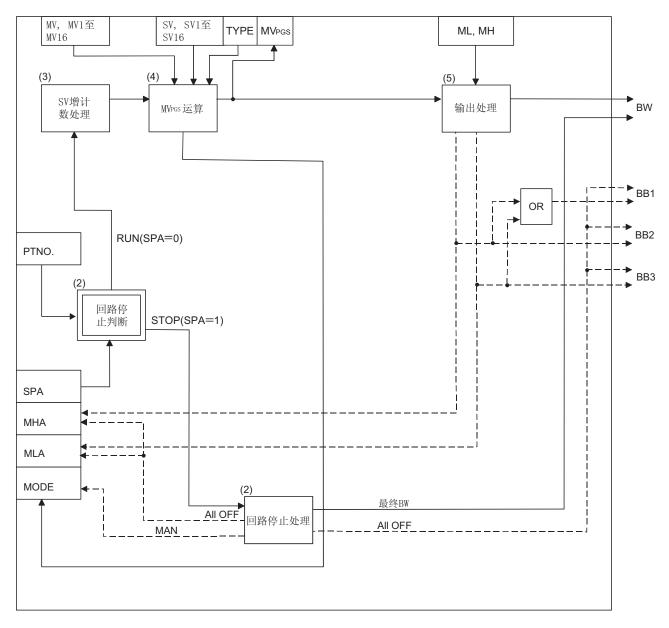
9.23 程序设定器(S.PGS)

					可用软元件				
设定 数据		次元件 用户)	文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K、H	其他
	位	字		位	字	大 ()[] (()[]	ZII	N 11	
S 1	_	()		-				
©1		(=	=		
<u>\$2</u>	- 0			_					
(D2)	_	(=	=		


*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

按照 SV 和 MV 的模式提供一种控制输出。


S. PGS 指令的输出类型有 3 种: "保持型"、"返回型"和"循环型"。

- 保持型:由 SV10 保持值提供输出。
- 返还型:设定值(SV)设为0且上一个值作为操作值(MV)输出。
- 周期型: SV1 至 SV10 处理结束后又重新从 SV1 开始处理并提供输出。

结构图

S. PGS 指令的处理块图如下所示。 (处理块图的(2)至(5)表示处理内容的说明顺序。)

控制数据

(1) S. PGS 指令中的数据定义

指定位置		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
		BB		_		ı	ı	ı
块内存		BB1	报警	b15 b12 b8 b4 b0 B B B				
	+2	BB2	输出上限报警	B B B B B B 3 2 1	_	BIN 16 位	_	S
		BB3	输出下限报警	(0: 无报警) (1: 报警)				
	©2 +1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0 至 FFFFH b15 b12 b8 b4 b0	_	BIN 16 位	4000н	S/U
回路标签 内存 ^{*2}	+4	INH	报警检测禁止	0 至 FFFFH b15 b12 b8 b4 b0 E R R H L I I I I I I I I I I I I I I I I I I		BIN 16 位	4000н	S/U
	+10	PTN0	运算常数 折线点数	0至16	=	BIN 16 位	0	U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U
	+14 +15	SV	设定值	0 至 999999	S	实数	0.0	U
	+16	TYPE	运算类型	0:保持型运算 (当运算模式为 AUT 或 CAB) 1:返还型运算 (当运算模式为 AUT 或 CAB)	_	BIN 16 位	0	U
	+18 +19	MH	输出上限值	-10 至 110	%	实数	100.0	U

^{*1:}在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 回路标签寄存器和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

指定位置	Ī	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	+20 +21	ML	输出下限值	-10 至 110	%	实数	0.0	U
	+22 +23	SV1	设定时间1					
	:	:	:	0 至 999999	S	实数	0.0	U
回路标签 内存*2	+52 +53	SV16	设定时间 16					
	+54 +55	MV1	设定输出1					
	:	;	:	-10 至 110	%	实数	0.0	U
	+84 +85	MV16	设定输出 16					

*1: 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

不能由用户进行数据设置。

*2: 回路标签寄存器和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

(2) 执行周期(**Δ**T)

将执行周期以实数设定到 SD1500 和 SD1501 中。

处理内容

(1) 输出类型

输出类型由下述运算模式 (MODE) 和运算类型 (TYPE) 的组合决定:

运行模式 (MODE)	动作类型 (TYPE)	动作内容
MAN, CMB, CMV, LCM, LCA, LCC	_	运算停止于当前 SV 和 MV
AUT, CAB	0	保持型动作
AU1, CAB	1	返回型动作
CAS, CCB, CSV	_	周期型运算

(2) 回路停止处理

(a) 如果将报警检测(ALM)的 SPA 设为 1,则执行回路停止。

当回路停止或者运算常数折线点数(PTN0)为0时,执行下列处理并终止S.PGS指令:

- 1) 保持 BW 值。
- 2) 将报警检测 (ALM) 的 MHA 和 MLA 变为 0。
- 3) 将运行模式 (MODE) 置于 MAN。
- 4) 将 BB 的 BB1 至 BB3 变为 0。
- (b) 如果将报警检测(ALM)的 SPA 设为 0,则执行回路运行。如果执行回路运行,将进行"(3) SV 计数到处理"。

(3) SV 计数到处理

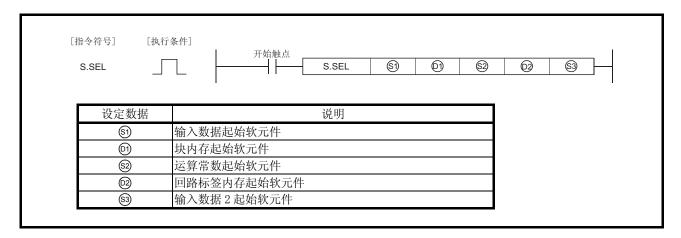
在各个执行周期中按以下公式进行 SV 计数到处理。

SV' = SV + Δ T

(4) MV_{PGS}运算

	类型	保持	返还	周期		
1		AUT,	CAS, CCB, CSV			
MVpgs	SV < SV1	MV1				
运算	$SVn-1 \leq SV < SVn$	$\frac{MV_{n}-MV_{n-1}}{SV_{n}-SV_{n-1}} \times (SV-SV_{n-1}) + MV_{n-1}$				
	模式变化	MAN	MAN	没有移动		
水 CV' > CV- 叶	SV	上一个值	0	0		
当 SV' > SVn 时 处理	MV	上一个值	上一个值	MV1		
	重新开始模式	SV 被设定后模式 由 MAN 变为 AUT。	模式由 MAN 变为 AUT。	自动重新开始		

(5) 输出处理

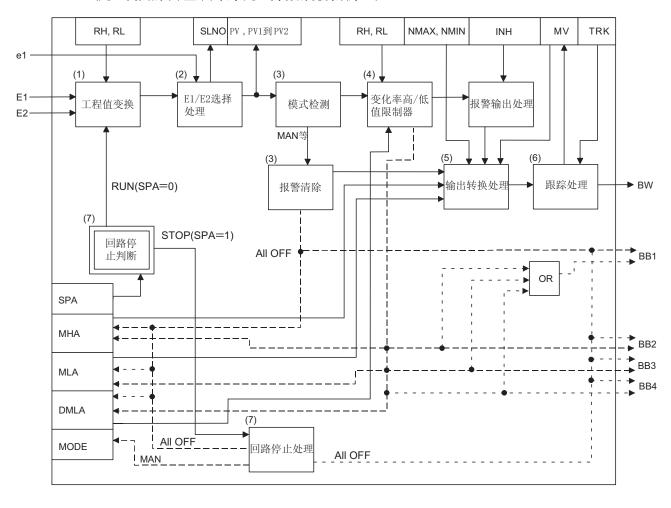

		手动		自动			
条件	MAN, CM	B, CMV, LCM, L	CA, LCC	AUT, CAB, CAS, CCB, CSV			
	BW	BB2, MHA	BB3, MLA	BW	BB2, MHA	BB3, MLA	
$\mathrm{MV}_{\mathrm{PGS}}>\mathrm{MH}$	MV_n	0	0	$MV_n = MH$	1^{*_1}	0	
$\mathrm{MV}_{\mathrm{PGS}}<\mathrm{ML}$	MV_n	0	0	$MV_n = ML$	0	1*2	
其他	MV_n	0	0	$MV_n = MV_{PGS}$	0	0	

*1: 当报警检测禁止(INH)的 MHI 或 ERRI 为 1 时,此时由于报警被禁止,MHA 和 BB2 将变为 0。

*2: 当报警检测禁止(INH)的 MLI 或 ERRI 为 1 时,此时由于报警被禁止,MLA 和 BB3 将变为 0。

9.24 回路选择器(S. SEL)

					可用软元件							
设定 数据		次元件 , 用户)	文件寄存器	MELSECNET/H 直接 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其他			
	位字			位	字	火 ()にコ() にコ	ZII	Ν, 11				
§ 1	-	(0		-							
©1	1	(_								
<u>\$2</u>	1	(0		_							
©2		0		_								
§ 3	_	(=	=					


功能

在指定模式(自动模式/手动模式)下提供输出。

- 在自动模式下,由选择信号(e1)选择的输入值1(E1)或输入值2(E2)被输出。
- 在手动模式下,操作值(MV)被输出。

结构图

S. SEL 指令的处理块图如下所示。 (处理块图的(1)至(7)表示处理内容的说明顺序。)

控制数据

(1) S. SEL 指令中指定的数据

指定位	置.	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
输入数据 1	\$1+0 +1	E1	输入值1	-999999 至 9999999	%	实数	_	U
	©1+0 +1	BW	输出值	(-999999 至 9999999)	=	实数	_	S
		BB		=				
块内存		BB1	报警	b15 b12 b8 b4 b0				
埃內什	+2	BB2	输出高值报警	B B B B B B B B A 3 2 1		BIN		
		BB3	输出低值报警		_	16 位	=	S
		BB4	输出变化率报警	(0: 无报警) (1: 报警)				
	\$2+0 +1	NMAX	输出转换上限	-999999 至 9999999	_	实数	100. 0	U
	+2 +3	NMIN	输出转换下限	-999999 至 9999999	_	实数	0.0	U
	+4	TRK	跟踪位	0: 无跟踪 1: 跟踪	_	BIN 16 位	0	U
运算常数	+5	SVPTN	设定值模式	b15 输入值选择*2 0: E1 1: E2 输入值1(E1)使用*3 0: 使用 1: 未使用 输入值2(E2)使用*4 0: 使用 1: 未使用 输入值1(E1)模式*5 0: E1是上回路 1: E1不是上回路 1: E1不是上回路 1: E2不是上回路 1: E2不是上回路		BIN 16 位	1Ен	U

- *1: 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。
- *2: 为输入值选择 E1 或 E2。
- *3: 无论输入值1(E1)是否被使用都可指定。
- *4: 无论输入值 2(E2) 是否被使用都可指定。
- *5: 同输入值 1(E1),无论上回路的操作值(MV)是否被使用都可指定。
- *6: 同输入值 2(E2),无论上回路的操作值(MV)是否被使用都可指定。

指定位置	置	符号	名称	R 推荐范围*¹	单位	数据格式	标准值	存储
	1	MODE	运算模式	0至FFFFH b15 b12 b8 b4 b0	_	BIN 16 位	8н	S/U
	+3	ALM	报警检测	0至 FFFF ^H b15 b12 b8 b4 b0 SPA DMLA, MHA, MLA 0: 回路RUN (0: 无报警) 1: 回路STOP (1: 报警)	_	BIN 16 位	4000н	S/U
	+4	INH	报警检测禁止	0 至 FFFF _H b15 b12 b8 b4 b0 E D M M M H L H I I 0: 能够报警 1: 报警禁止	_	BIN 16 位	4000н	S/U
	+10 +11	PV	选择值	RL 至 RH	_	实数	0.0	S
回路标签	+12 +13	MV	操作值	-10至110	%	实数	0.0	S/U
内存*2	+14 +15	PV1	测定量1	RL 至 RH	_	实数	0.0	S
	+16 +17	PV2	测定量2	RL 至 RH	=	实数	0.0	S
	+18 +19	MH	输出上限值	-10 至 110	%	实数	100.0	U
	+20 +21	ML	输出下限值	-10 至 110	%	实数	0.0	U
	+22 +23	RH	工程值上限	-999999 至 999999	_	实数	100. 0	U
	+24 +25	RL	工程值下限	-999999 至 999999	_	实数	0.0	U
	+26	SLN0	选择号	b15 輸入值1(E1)选择 0:未选择 1:选择 輸入值2(E2)使用 0:未选择 1:选择	_	BIN 16 位	0	S
回路标签 内存* ²	+48 +49	DML	输出变化率 限制值	0至100	%	实数	100.0	U
输入数据 2	\$3+0 +1	E2	输入值2	-999999 至 999999	%	实数	0.0	U

^{*1:} 在本栏中,凡是括号中给出的推荐范围内的数据由系统存储。 用户不能设定该参数。

^{*2:} 回路标签内存和回路标签过去值寄存器总共占用 128 个字。(详见 3. 3. 1 节。)

处理内容

(1) 工程值变换

通过下列公式进行工程值变换。

$$PV_n = \frac{RH - RL}{100} \times E_n + RL$$

(2) 输入值 1(E1)或输入值 2(E2)选择处理

根据设定值模式(SVPTN)的 e1 的指定,选择是使用输入值 1(E1)还是输入值 2(E2)。

- e1 = 0: 输入值 1(E1)被使用 PV = PV1
- e1 = 1: 输入值 2(E2)被使用 PV = PV2

SLNO: 对应于输入值 1 (E1) 或输入值 2 (E2) 的位变为 1。

(3) 模式检查

根据运行模式(MODE)的设置进行以下处理:

- (a) 当运算模式 (MODE) 为 MAN, CMB, CMV 和 LCM 中的任一种时:
 - 1) 执行"(5)输出转换处理"。
 - 2) 将报警检测(ALM)的 MHA、MLA 和 DMLA 变为 0。
 - 3) 将 BB 的 BB1 至 BB4 变为 0。
- (b) 当运行模式 (MODE) 为 AUT、CAB、CAS、CCB、CSV、LCA 和 LCC 中的任一种时:
 - 1) 通过下述公式进行工程值逆转换:

$$T = \frac{100}{RH - RL} \times (PV - RL)$$

2) 执行"(4)变化率、上/下限限制器"。

(4) 变化率、上/下限限制器

对输入值 1(E1)或输入值 2(E2)执行变化率和高/低值限制值检测。

(a) 变化率限制器

条件	Τ'	BB4, DMLA
$ T - MV_n \leq DML$	T' = T	0
$(T - MV_n) > DML$	$T' = MV_n + DML$	1^{*_1}
$(T - MV_n) < - DML$	$T' = MV_n - DML$	1^{*_1}

*1: 当报警检测禁止(INH)中的 DMLI 或 ERRI 被置 1 时,此时由于报警被禁止,DMLA 和 BB4 将显示 0。

(b) 高/低值限制器

条件	MV	BB2, MHA	BB3, MLA
T' > MH	$MV_n = MH$	1*2	0
T' < ML	$MV_n = ML$	0	1*3
ML ≦ T' ≦ MH	$MV_n = T'$	0	0

*2: 当报警检测禁止(INH)中的 MHI 或 ERRI 被置 1 时,此时由于报警被禁止, MHA 和 BB2 将显示 0。

*3: 当报警检测禁止(INH)中的 MLI 或 ERRI 被置 1 时,此时由于报警被禁止,MLA 和 BB3 将显示 0。

(5) 输出转换处理

通过下述公式进行工程值变换。

 $BW = \frac{NMAX - NMIN}{100} \times MV_n + NMIN$

(6) 跟踪处理

- (a) 当满足下述所有条件时,BW的值输出至输入值1(E1)或输入值2(E2)。
 - 1) 运行模式 (MODE) 为 MAN、CMB、CMV 和 LCM 中的任一种时。
 - 2) 跟踪位(TRK)为1。

 $E_n = MV_n$

- (b) 当满足下述所有条件时, BW 的值输出至输入值 1(E1) 或输入值 2(E2)。
 - 1) 运算模式 (MODE) 为 AUT, CAS, CAB, CCB, CSV, LCA 和 LCC 中的任一种。
 - 2) 跟踪位(TRK)为1。
 - 3) BB的BB1为1。

 $E_n = MV_n$

(7) 回路停止处理

- (a) 报警检测(ALM)中的 SPA 设为 1 则选择回路停止。 回路停止执行下列操作并终止 S. SEL 指令:
 - 1) BW 保持上一个值。
 - 2) 报警检测(ALM)的 DMLA、MHA 和 MLA 变为 0。
 - 3) 将运行模式(MODE)变为 MAN。
 - 4) BB的BB1至BB4变为0。
- (b) 如果将报警检测(ALM)的 SPA 设为 0,则执行回路运行。 回路运行执行从"(1) 工程值变换"至"(6) 跟踪处理"为止的处理。

错误

●当发生运算错误时

9.25 无冲击切换(S.BUMP)

		可用软元件									
设定 数据		次元件 用户)	文件寄存器	MELSECNET/H 直接 JC 3\C 3		智能功能模块 [[]\G[]	变址寄存器 Zn	常数 K, H	其他		
	位字			位	字	火 ()に」()に」					
§ 1	-		0		_						
© 1	1		0		_						
<u>\$2</u>	1	0		-							
© 2	_		0			-	_				

功能

将运行模式从手动模式切换为自动模式时,使输出值(BW)以一定比率从输出控制值(E2)趋近于输出设定值(E1)。

当输出值(BW)通过基于输出设定值(E1)的延迟区(a)进入指定的范围时,通过一次延迟使输出值(BW)趋近于输出设定值(E1)。

控制数据

(1) S. BUMP 指令中的数据定义

指定位	置	符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输出设定值	-999999 至 999999	%	实数	_	U
输入数据	+2 +3	E2	输出控制值	-999999 至 999999	%	实数	_	U
+4		e1	模式切换信号	0: 手动模式 1: 自动模式	_	BIN 16 位		U
块内存	©1)+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
运算常数	\$2+0 +1	T	延迟时间	0至 9999999	S	实数	1.0	U
烂 异币奴	+2 +3	a	延时区	0 至 9999999	%	实数	1.0	U
本地工作	©2+0 +1	Хq	初始偏差值	作为工作区域由系统使用		实数	1. 0	S
内存*2	+2 +3	Хр	偏差	TF // 工 F 凸	_	大奴	1.0	ა

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。

不能由用户进行数据设置。

(2) 执行周期(**∆**T)

将执行周期以实数设定到 SD1500 和 SD1501 中。

处理内容

- (1)以下任一种处理的执行取决于输入数据的模式选择信号(e1)的设置。
 - (a) 在手动模式(e1 = 0)下,输出值(BW),初始偏差值(Xg)和偏差(Xp)按下列等式进行计算:
 - BW = 输出控制值(E2)
 - Xq = 输出控制值(E2) 输出设定值(E1)
 - Xp = 输出控制值(E2) 输出设定值(E1)
 - (b)在自动模式(e1 = 1)下,输出值按下列条件进行计算:

条件	Xp > a	Xp ≦ a
Хр	$X_p = X_{p'} - \frac{\Delta T}{T} X_q$	$X_p = \frac{T}{T + \Delta T} X_{p'}$
BW	BW = E1 + Xp 假设 $ Xp \le \frac{\Delta T}{T} Xq $ \bullet $BW = E1$ \bullet $Xp = Xp'$	BW = E1 + Xp 假设 $ Xp \le 10^{-4}$ • BW = E1 • Xp = Xp'

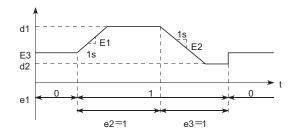
然而,在自动模式下,当 $T \leq \Delta T$ 时, BW = E1, Xp = Xp'

错误

● 当运算错误发生时

^{*2:} 从初始状态开始控制时,必须通过顺控程序进行数据清除。

9.26 模拟内存(S.AMR)


		可用软元件									
设定 数据		次元件 用户)	文件寄存器	MELSECNET/H 直接 JC 3\C 3		智能功能模块UL3\GL3	变址寄存器 Zn	常数 K、H	其他		
	位	位字		位	字	火 ULコ\ULコ	ZII	KV II			
S 1	-	(0		=						
© 1	1	(0		-						
<u>\$2</u>	1		0		_						
© 2	_	(0			-	_				

*1: 特殊寄存器 SD1506 可被指定为虚拟软元件。

功能

以一定比率增加或减少输出值。

控制数据

(1) S. AMR 指令中指定的数据

指定位		符号	名称	推荐范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输出增加值	-999999 至 9999999	-	实数	_	U
	+2 +3	E2	输出减少值	-999999 至 9999999		实数		U
44 2 W. IEI	+4 +5	ЕЗ	输出设定值	-999999 至 9999999		实数		U
输入数据		e1	运算选择信号	b15 b12 b8 b4 b0				
	+6	e2	输出增加信号	e e e a 3 2 1	_	BIN 16 位	_	U
		e3	输出减少信号	e1 e2 e3 0: 手动模式 0: 未增加 0: 未减少 1: 自动模式 1: 增加 1: 减少		,		
块内存	©1+0 +1	BW	输出值	(-999999 至 9999999)	_	实数		S
运算常数	\$2+0 +1	d1	输出值上限	0至9999999		实数	1.0	U
心 并币效	+2 +3	d2	输出值下限	0至 9999999		实数	1. 0	U

^{*1:} 在推荐的范围一栏中的带括号的项目是被系统用于存储数据。 不能由用户进行数据设置。

(2) 执行周期(**△**T)

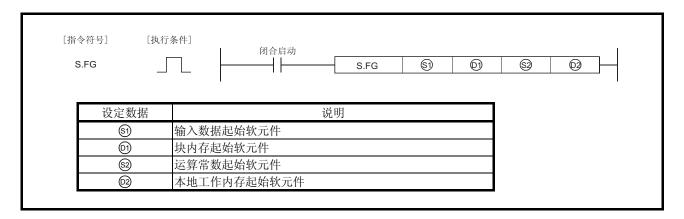
将执行周期以实数设定到 SD1500 和 SD1501 中。

处理内容

- (1)根据动作输出信号(e1)、输出增加信号(e2)和输出减少信号(e3)的指定执行以下处理。
 - (a) 在手动模式(e1 = 0)下, BW = E3。
 - (b) 在自动模式(e1 = 1)下,下表中任一种运算的执行取决于输出增加信号(e2) 和输出减少信号(e3)的设置。

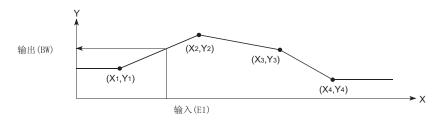
e2	e3	BW
1	0	$BW = BW + E1 \times \Delta T$
		假设
		$d1 \leq BW: BW = d1$
0	1	$BW = BW - E2 \times \Delta T$
		假设
		$BW \le d2 \colon BW = d2$
1	1	BW = BW
0	0	DW — DW

错误


● 当运算错误发生时

9 控制运算指令	MELSEC-Q
备忘录	
□ ,□ 1 ←	

10 补偿运算指令


10.1 函数发生器(S.FG)

		可用软元件									
设定 数据		改元件 ,用户)			MELSECNET/H 直接 J〔]\[]		变址寄存器 Zn	常数 K, H	其它		
	位	字		位	字	块 UE]\GE]	ZII	Ν, П			
§ 1	_		0		_						
© 1	_				-						
<u>\$2</u>	_	0		_							
D2	-					-	_				

功能

按照由运算常数中指定的 n 个折点构成的函数发生器模式,输出相对于输入值(E1)的值。

10 - 1 10 - 1

10

10 - 2

控制数据

(1) 数据由 S. FG 指令指定

指定位	.置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数	1	U
存储块	©1+0 +1	BW	输出值	(-999999 至 999999)		实数		S
运算常数	§2)+()	SN	折线顶点数	0至48	_	16 位二进 制数	0	U
	©2+0 +1	X1	折线顶点坐标					
	+2 +3	Y1	折线顶点坐标					
* # T # *	+4 +5	X2	折线顶点坐标		_	实数	_	U
本地工作存储区	+6 +7	Y2	折线顶点坐标	-999999 至 999999				
	:	:	:					
	+4SN-4 +4SN-3	Xn	折线顶点坐标					
	+4SN-2 +4SN-1	Yn	折线顶点坐标					

^{* 1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. FG 指令执行以下操作。

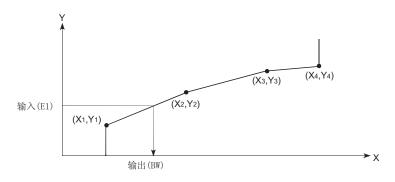
条件	输出值(BW)			
E1 ≤ X1	BW = Y1			
$X_{i-1} < E1 \le X_i (i = 2 \times n)$	$BW = \frac{Y_i - Y_{i-1}}{X_i - X_{i-1}} \times (E1 - X_{i-1}) + Y_{i-1}$			
Xn < E1	BW = Yn			

- (2)当 n = 0 时没有执行。
- (3)当 X_{i-1} > X_i, n = i-1(后边的被忽略) 当有多个Yi 对应一个Xi 时,选择最小的i。

错误

● 当(n < 0) 或 (n > 48)

● 当运算错误发生时 错误代码: 4100 错误代码: 4100


10.2 反函数发生器(S. IFG)

		可用软元件										
设定 数据		软元件MELSECNET/H克,用户)文件寄存器直接 JC JC J			智能功能模	变址寄存器 Zn	常数 K, H	其它				
	位	字		位	字	好 ひこ 」 (ひこ)	ZII	к, п				
S 1	-	(0		=							
© 1	1	(0		_							
<u>\$2</u>	1			_								
© 2	_	- 0				-	_					

功能

按照由运算常数中指定的 n 个折点构成的反函数发生器模式,输出相对于输入值(E1)的值。

控制数据

(1) 数据由 S. IFG 指令指定

指定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	=	实数	_	U
存储块	©1+0 +1	BW	输出值	(-999999 至 999999)		实数		S
运算常数	§2)+()	SN	折线顶点数	0至48		16 位二进 制数	0	U
	©2+0 +1	X1	折线顶点坐标					
	+2 +3	Y1	折线顶点坐标					
	+4 +5	X2	折线顶点坐标			- 实数	_	
本地工作存 储区	+6 +7	Y2	折线顶点坐标	-999999 至 999999	_			U
	i	i	:					
	+4SN-4 +4SN-3	Xn	折线顶点坐标					
	+4SN-2 +4SN-1	Yn	线顶点坐标					

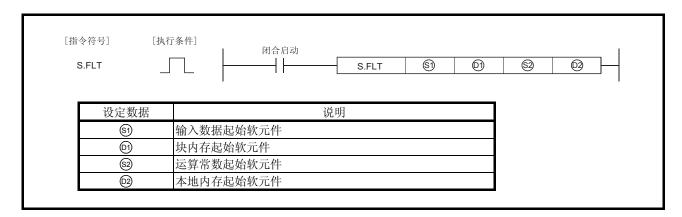
^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. IFG 指令执行以下操作。

条件	输出值(BW)				
E1 ≦ Y1	BW = X1				
$Y_{i-1} < E1 \le Y_i (i = 2 \Xi n)$	$BW = \frac{X_i - X_{i-1}}{Y_i - Y_{i-1}} \times (E1 - Y_{i-1}) + X_{i-1}$				
Yn < E1	BW = Xn				

- (2) 当 n = 0 时,没有执行。
- (3) 当 $Y_{i-1} > Y_{i}$, n = i-1 (后边的被忽略)。 当有多个 Xi 对应一个 Yi 时,选择最小的 i。


错误

● 当运算错误发生时 错误代码: 4100 ● 当(n < 0)或(n > 48) 错误代码: 4100

10 - 4 10 - 4

10.3 标准滤波器(S.FLT)

		可用软元件										
设定 数据		内部软元件 MELSECNET/H (系统,用户) 文件寄存器 直接 J: 3\: 3\: 3\: 3\: 3\: 3\: 3\: 3\: 3\: 3\		智能功能模	变址寄存器 Zn	常数 K, H	其它					
	位			位	字	5/ 0L 1/0L 1	ZII	Ν, 11				
S 1	_	(0		=							
© 1	-	(=	=					
<u>\$2</u>	_	0		_								
(D2)	-	(=	=					

功能

在数据采集周期(ST)内采得的 SN 个输入值(E1)存储在终止时间表中,输出值为这 SN 个点的均值。

控制数据

(1) 数据由 S. FLT 指令指定。

指定值	立置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数		U
	©1)+0 +1	BW	输出值	(-999999 至 999999)	_	实数	_	S
		BB		=				
存储区	+2	BB1	数据满标志位	b15 b12 b8 b4 b0 B B B 1 1 (0: 数据满) (1: 数据未满)		16 位二进 制数	1	S
运算常数	\$2+0 +1	ST	数据采集周期	0至999999	S	实数	1. 0	U
	+2	SN	采样数	0至 48	_	BIN16 位	0	U
	©2+0 +1	ST'	上次数据采集 周期			实数	_	S
	+2	SN'	上次数据采样 数	4. <i>万</i> . 公 田. 以 .丁. 以 .豆	_	BIN16 位	1	S
	+3	i	循环次数	由系统用作工作区。	_	BIN16 位		S
	+4	n1	存储数据的个数		_	BIN16 位	ļ	S
	+5	n2	存储		_	BIN16 位	I	S
本地工作 存储区*2	+6 +7	_	_	_	_	_	_	-
	+8 +9	1	终止时间表1					
	+10 +11	2	终止时间表 2	由系统用作工作区。		实数	_	S
	:	:	1					
	+2SN+6 +2SN+7	SN	终止时间表 SN					

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

(2) 执行周期(△T)

在 SD1500 和 SD1501 中以实数设定执行周期。

^{*2:} 回路标签和回路标签过去值共占用 128 字的内存。(见 3. 3. 1 详细说明)。

执行过程

- (1)数据更新周期为 $\frac{ST}{\Delta T}$ (小数点后四舍五入)。
- (2) 当终止时间表中放满 SN 个数据的时候,数据满标志位(BB1)变为 0。 当终止时间表未满的时候,其值为 1。

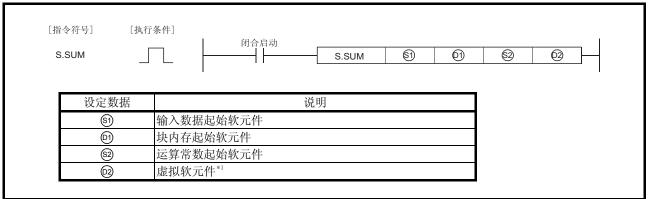
要点

- 当采样数(SN)为 0,BW 和 BB 位被清除并且指令终止执行。
- 当终止时间表被放满数据前,平均值不会输出。
- 执行中ST = $n \times \triangle T$ (为整数)。

错误

● 当运算错误发生时

● 当(SN < 0)或(SN > 48)


错误代码: 4100

错误代码: 4100

10 - 7 10 - 7

10.4 累加器(S.SUM)

		可用软元件										
设定 数据		郊元件 充,用户) 文件寄存器					变址寄存器 Zn	常数 K, H	其它			
	位	字		位	. 海上上上 块 U. 1\G. 1 Zi		ZII	Λ, 11				
S 1	-	(0		=							
© 1	-	()	_								
<u>\$2</u>	_	0		_								
(D2)	-	()			=	=					

* 1:特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

当积分启动信号从0变为1时,对输入值(E1)进行积分并输出。

控制数据

(1) 数据由 S. SUM 指令设定

指定位置	T .	符号	名称	建议范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输入值	-999999 至 999999		实数		U
		е		_				
输入数据	+2	el	积分启动信号	b15 b12 b8 b4 b0 e 1 c 和分未执行 1: 积分已执行	ı	BIN16 位	1	U
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	=	实数	=	S
	\$2+0 +1	ILC	输入低值	-999999 至 999999		实数	0.0	U
运算常数	+2 +3	A	初始值	-999999 至 999999	l	实数	0.0	U
	+4	RANGE	输入范围	1: /秒 2: /分 3: /小时		BIN16 位	1	U

^{* 1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

(2) 执行周期(△T)

在 SD1500 和 SD1501 中以实数设定执行周期。

执行过程

(1) S. SUM 指令执行以下操作。

e1	E1	输出(BW)
0	_	运算常数的初始值(A)被输出。
	E1 ≦ ILC	上一值不经变化地输出。
1	E1 > ILC	BW = E1 × $\frac{\Delta T}{T}$ + 上一值

(2)用在运算中的 T 的值随着输入范围 (RANGE) 的设定而改变。

• $\stackrel{\text{def}}{=}$ RANGE = 1, T = 1

• $\stackrel{\text{def}}{=}$ RANGE = 2, T = 60

 \bullet $\stackrel{\text{def}}{=}$ RANGE = 3, T = 3600

错误

● 当运算错误发生时

● 当 RANGE 的设定不在 1 和 3 之间时

错误代码: 4100 错误代码: 4100

10 - 9 10 - 9

10.5 温度/压力补偿(S. TPC)

	可用软元件									
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 直接 JC 3/C 3		智能功能模	变址寄存器 Zn		其它	
	位字			位	字	好 ひょ いしょ	ZII	К, Н		
S 1	-	0		=						
© 1	-	()	_						
<u>\$2</u>	_	()	_						
(D2)	=	- 0				=	=			

* 1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

对输入值(E1)进行温度压力补偿(温度或压力)后输出。

10 - 10 10 - 10

控制数

(1) 数据由 S. TPC 指令设定。

设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	压力差值	-999999 至 999999	-	实数	_	U
	+2 +3	E2	测量温度	-999999 至 999999	_	实数	_	U
	+4 +5	ЕЗ	测量压力	-999999 至 999999		实数		U
输入数据		е		<u> </u>				
	+6	e1	E2 使用标志	b15 b12 b8 b4 b0 e e e 2 1	_	16 位二进制	Ī	U
		e2	E3 使用标志	0: 未使用 1: 使用				O
存储块	©1+0 +1	BW	输出值	(-999999 至 999999)	_	实数	_	S
	\$2+0 +1	TEMP	设计温度 T' (工程值)	-999999 至 999999	°C	实数	0.0	U
云質	+2 +3	B1	偏移量 (温度)	-999999 至 999999	°C	实数	273. 15	U
运算常数	+4 +5	PRES	设计压力 P' (工程值)	-999999 至 999999	_	实数	0.0	U
	+6 +7	B2	偏移量 (压力)	-999999 至 999999	_	实数	10332. 0	U

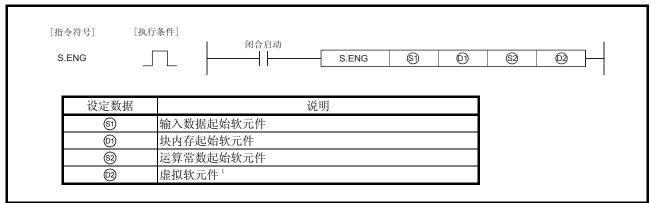
^{* 1:}条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

处理内容

(1)在 S. TPC 指令中通过以下公式计算温度/压力补偿值。

 $BW = E1 \times A1 \times A2$

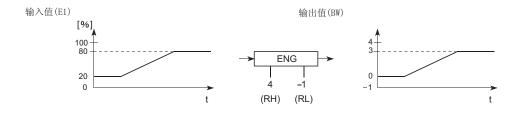
(2) A1 和 A2 的值由下列公式计算。


输	入	A1	A2
E2	E3	AI	AZ
使用	使用	<u>T'+B1</u> E2+B1	E3+B2 P'+B2
不用	使用	1.0	<u>E3+B2</u> P'+B2
使用	不用	<u>T'+B1</u> E2+B1	1.0

错误

● 当一个运算错误发生时

10.6 工程值变换(S. ENG)


	可用软元件									
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 直接 JC J\C]		智能功能模 块[]\G[]	变址寄存器 Zn	常数 K. H	其它	
	位	字		位	字	火 [1/0]	Z11	Ν, 11		
§ 1	-	0		=						
© 1	-			_						
<u>\$2</u>	_	(_						
(D2)	_					=	=			

* 1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输入值(E1)经工程变换后输出。

10 - 12 10 - 12

控制数

(1) 数据由 S. ENG 指令设定。

控制数		符号	名称	建议范围*1	单 位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数	_	U
存储区	©1+0 +1	BW	输出值	(-999999 至 999999)	=	实数	_	S
运算常数	\$2+0 +1	RH	工程值上限	-999999 至 999999	=	实数	100. 0	U
色好市效	+2 +3	RL	工程值下限	-999999 至 999999		实数	0.0	U

^{* 1:}条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. ENG 指令执行以下操作。

BW =
$$\frac{RH-RL}{100}$$
 × E1+RL (E1= 0 到 100%)

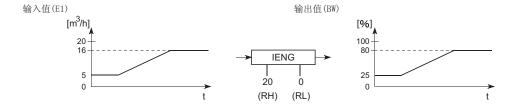
错误

● 当运算错误发生时

错误代码: 4100

10 - 13 10 - 13

10.7 工程值逆转换(S. IENG)


	可用软元件									
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 直接 JC J\[]		智能功能模-块[[]\[[]]\]	变址寄存器 Zn	常数	其它	
	位	位字		位	字	好 ひょうしい	ZII	К, Н		
S 1	_	0		=						
©1	ı	()	_						
<u>\$2</u>	I	()	_						
(D2)	_	- 0				=	=			

* 1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输入值(E1)变换成百分数的形式输出。

10 - 14 10 - 14

控制数

(1) 数据由 S. IENG 指令设定

设定位置	置.	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	=	实数	=	U
存储块	©1+0 +1	BW	输出值	(-999999 至 999999)	%	实数	_	S
运算常数	\$2+0 +1	RH	工程值上限	-999999 至 999999	_	实数	100. 0	U
心 昇币数	+2 +3	RL	工程值下限	-999999 至 999999	=	实数	0.0	U

^{* 1:}条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的

执行过程

(1) S. IENG 指令执行以下操作。

$$BW = \frac{100}{RH - RL} \times (E1 - RL) \quad (\%)$$

- (2)设定并满足 RH > RL。
- (3) 如果 $RH \leq RL$, 过程被执行,输出值不变,无反变换。
- (4) 如果 RH = RL, BW = 0。

错误

● 当一个运算错误发生时

11 算术运算指令

11.1 加法(S.ADD)

		可用软元件										
设定 数据		次元件 用户)	MELSECNET/H 文件寄存器 方向 JC JC J		智能功能模	变址寄存器 Zn	常数 K, H	其它				
	位	字		位	字	火╚╗╚╻	LII	Ν, П				
S 1	-	(Ó			=	_					
(1)	-	(=	_					
<u>\$2</u>		0		_								
© 2		(-	=					

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输入值(E1至 En)乘以各自的系数后相加。

11 - 1 11 - 1

控制数据

(1) 数据由 S. ADD 指令设定

设定位置	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
	S1 +0	n	输入个数	0 至 5	_	BIN 16 位	_	U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值 2	-999999 至 999999	_	实数		U
	:	:	÷			2 137		
	+2n-1 +2n	En	输入值 n					
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	İ	实数		S
	<u>\$2</u> +0	n	系数个数	0至5		BIN 16 位	0	U
	+1 +2	K1	系数 1					
运算常数	+3 +4	K2	系数 2	-999999 至 999999	_	实数	1. 0	U
之升 II 妖	:	:	:					
	+2n-1 +2n	Kn	系数 n					
	+2n+1 +2n+2	В	偏移量	-999999 至 999999		实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的

执行过程

(1) S. ADD 指令执行以下操作。

$$BW = (K1 \times E1) + (K2 \times E2) \cdots + (Kn \times En) + B$$

(2)当n为0时, BW = B。

错误

● 当一个运算错误发生时

错误代码: 4100 ● 当n不是从0至5时 错误代码: 4100

11 - 2 11 - 2

11.2 减法(S.SUB)

					可用软元件							
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 方向 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其它			
	位	字		位	字	灰 (L1/(L1	ZII	Λ, 11				
§ 1	-	(0									
© 1	_	()	_								
<u>\$2</u>	_	(0		•	-	_					
©2	_	()	•	•	-	=					

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输入值(El 至 En)乘以各自的系数后相减。

11 - 3 11 - 3

控制数据

(1) 数据由 S. SUB 指令设定

设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
	§1)+0	n	输入个数	0至5	_	BIN 16 位	_	U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值 2	-999999 至 999999	-	实数	_	U
	:	:	:					
	+2n-1 +2n	En	输入值 n					
块内存	①+0 +1	BW	输出值	(-999999 至 999999)		实数		S
	\$2+0	n	系数个数	0至5	1	BIN 16 位	0	U
	+1 +2	K1	系数 1					
运算常数	+3 +4	K2	系数 2	-999999 至 999999		实数	1. 0	U
	:	÷	:					
_	+2n-1 +2n	Kn	系数 n					
	+2n+1 +2n+2	В	偏移量	-999999 至 999999		实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. SUB 指令执行以下操作。

$$BW = (K1 \times E1) - (K2 \times E2) \cdots - (Kn \times En) + B$$

(2) 当 n 为 0 时, BW = B。

错误

● 当一个运算错误发生时

错误代码: 4100 ● 当n不是从0至5时 错误代码: 4100

11 - 4 11 - 4

11.3 乘法(S.MUL)

		可用软元件											
设定 数据		次元件 用户)	文件寄存器			智能功能模块U[]\G[]	变址寄存器 Zn	常数 K, H	其它				
	位	字		位	字	大 ULI\ULI	ZII	Ν, П					
S 1		(Ó			=	=						
© 1		(-									
<u>\$2</u>	ı	(0		_								
© 2	_	(-	_						

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输入值(E1至En)乘以各自的系数后相乘。

11 - 5 11 - 5

控制数据

(1) 数据由 S. MUL 指令设定

设定位置	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
	S1)+()	n	输入个数	0至5		BIN 16 位		U
	+1 +2	E1	输入值1					
输入数据	+3 +4	E2	输入值 2	-999999 至 999999	_	实数	_	U
	÷	÷	÷					
	+2n-1 +2n	En	输入值 n					
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	ı	实数	_	S
	<u>\$2</u> +0	n	系数个数	0至5	1	BIN 16 位	0	U
	+1 +2	K1	系数1					
运算常数	+3 +4	K2	系数 2	-999999 至 999999	_	实数	1. 0	U
	÷	:	:					
	+2n-1 +2n	Kn	系数 n					
	+2n+1 +2n+2	В	偏移量	-999999 至 999999		实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. MUL 指令执行以下操作。

BW = (K1 \times E1) \times (K2 \times E2) \cdots \times (Kn \times En) + B

(2)当n为0时, BW = B。

错误

● 当一个运算错误发生时

错误代码: 4100 ● 当n不是从0至5时 错误代码: 4100

11 - 6 11 - 6

11.4 除法(S.DIV)

		可用软元件											
设定 数据		次元件 用户)	文件寄存器	MELSECNET/H 方向 J[]\[]		智能功能模 块 U.]\G.]	变址寄存器 Zn	常数 K, H	其它				
	位	字		位	字	次 (L 1 (GL 1	ZII	Λ, П					
§ 1	_	(0			=	=						
© 1	ı	(-									
<u>\$2</u>	I		0			=	=						
© 2	_	(-	_						

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件.

功能

输入值1(E1)除以输入值2(E2)。

11 - 7 11 - 7

错误代码: 4100

控制数据

(1) 数据由 S. DIV 指令设定

设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值 1 (分子)	-999999 至 999999	_	实数	_	U
	+2 +3	E2	输入值 2 (分母)	-999999 至 999999	_	实数	_	U
块内存	©1+0 +1	BW	输出值	(-999999 至 999999)	_	实数	_	S
	\$2+0 +1	A	系数1	-999999 至 999999	=	实数	1.0	U
	+2 +3	K1	系数 2	-999999 至 999999	_	实数	1.0	U
运算常数	+4 +5	K2	系数3	-999999 至 999999		实数	1.0	U
色并市奴	+6 +7	B1	偏移量1	-999999 至 999999		实数	0.0	U
	+8 +9	B2	偏移量2	-999999 至 999999		实数	0.0	U
	+10 +11	В3	偏移量3	-999999 至 999999		实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. DIV 指令执行以下操作。

$$BW = A \times \frac{K1 \times E1 + B1}{K2 \times E2 + B2} + B3$$

(2)分母为0时, BW = B3。

错误

● 当一个运算错误发生时

11.5 开平方(S. SQR)

					可用软元件						
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 方向 J[3\[]		智能功能模	变址寄存器 Zn	常数 K, H	其它		
	位	字		位	字	─────────────────────────────────────	ZII	Ν, 11			
§ 1	_	(0		_						
© 1		(_							
<u>\$2</u>	I	(0			=	=				
(D2)	_	(=	_				

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输出值是输入值(E1)的开方。 当输入值为负数时,输出为0。

控制数据

(1)数据由 S. SQR 指令设定

设定位置	设定位置 符		名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	0 至 999999	=	实数		U
块内存	©)+0 +1	BW	输出值	(0至 999999)	=	实数	_	S
云質 党 粉	\$2+0 +1	OLC	输出低门槛值	0 至 999999	=	实数	0.0	U
运算常数	+2 +3	K	系数	0至 999999	_	实数	10. 0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

11 - 9 11 - 9

错误代码: 4100

执行过程

(1) S. SQR 指令执行以下操作。

$$BW = K \times \sqrt{(E1)}$$

(2) $\stackrel{\cdot}{=}$ K×√(E1) $\stackrel{\cdot}{=}$ 0LC, BW = 0. $\stackrel{\cdot}{=}$ (E1 < 0), BW = 0.

错误

● 当一个运算错误发生时

11 - 10 11 - 10

11.6 绝对值(S. ABS)


	r								
					可用软元件				
设定 数据		次元件 用户)	文件寄存器	MELSECNET/H 方向 J[]\[]		智能功能模	变址寄存器 Zn	常数 K, H	其它
	位	字		位	字	5/ 0E3/0E3	ZII	Ν, 11	
S 1	-	(0			=	=		
© 1	-	(=	=		
<u>\$2</u>	_	(0			_	_		
(D2)	_	(=	=		

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

输出值是输入值(E1)的绝对值。

11 - 11 11 - 11

错误代码: 4100

控制数据

(1) 数据由 S. ABS 指令设定

设定位		符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值	-999999 至 999999	_	实数	_	U
©1+0 +1 BW			输出值	(0 至 999999)	=	实数	_	S
		BB		_				
块内存	+2	BB1	判断输入值	b15 b12 b8 b4 b0 B B B B B B B B B B B B B B B B B B	-	BIN	_	S
		BB2	(E1) 的符号	When E1>0: BB1= 1 When E1<0: BB2= 1 When E1=0: BB1= BB2= 0		16 位		

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1) S. ABS 指令执行以下操作。

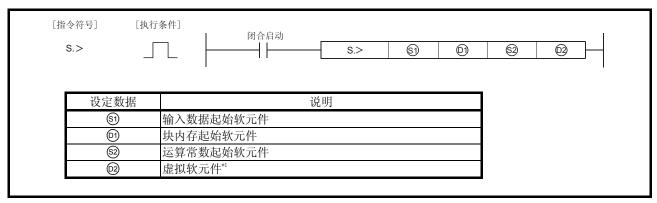
BW = |E1|

(2)输入值(E1)的符号被判断后输出至BB1和BB2。

E1 状态	BB1	BB2
E1 > 0	1	0
E1 < 0	0	1
E1 = 0	0	0

错误

● 当一个运算错误发生时


11 - 12 11 - 12

19

12 比较运算指令

12.1 大于比较(S.>)

					可用软元件						
设定 数据	内部软元件 (系统,用户)		文件寄存器	MELSECNET/H 方向 J[]\[]		智能功能模块UL3\GL3	变址寄存器 Zn	常数 K, H	其它		
	位	字		位	字	庆 UL J\UL J	ZII	Ν, 11			
§ 1	_	(Ò		_						
6 1		(\circ	_							
<u>\$2</u>		0		_							
© 2	_	(\supset	-							

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

比较输入值1(E1)和输入值2(E2),输出为比较结果。

12 - 1 12 - 1

错误代码: 4100

控制数据

(1) 数据由 S. >指令设定

设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值1	-999999 至 999999	_	实数	_	U
棚八奴/店	+2 +3	E2	输入值 2	-999999 至 999999	_	实数	_	U
	©1+0 +1	BW	输出值	(和输入值 1(E1)相同的值被存储)	_	实数	_	S
		BB		_				
块内存	+2	BB1	比较输出	b15 b12 b8 b4 b0 B B B 1 (E1和E2的比较结果保存并输出)	_	BIN 16 位	_	S
二質学教	\$2+0 +1	K	设值	-999999 至 999999	_	实数	0.0	U
运算常数 -	+2 +3	HS	滞后	0 至 999999	_	实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1)比较输入值 1(E1)和输入值 2(E2),比较结果输出至存储区的 BB1 中。

条件	BB1				
E1 > (E2+K)	1				
$E1 \leq (E2+K - HS)$	0				
$(E2+K - HS) < E1 \le (E2+K)$	输出为上一次的值				

错误

● 当滞后值为负数

12 - 2 12 - 2

12.2 小于比较(S. <)

		可用软元件											
设定 数据		内部软元件 (系统,用户)		MELSECNET/H 方向 J[]\[]		智能功能模 - 块 UL]\GL]	变址寄存器 Zn	常数 K, H	其它				
	位	字		位	字	大 ()L 1 (()L 1	211	Ν, 11					
S 1	_	(0		-								
(D1)	=	(-									
S 2		0		_									
D2	=	(\supset			_	_						

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

比较输入值1(E1)和输入值2(E2),输出为比较结果。

12 - 3 12 - 3

错误代码: 4100

控制数据

(1) 数据由 S. <指令设定

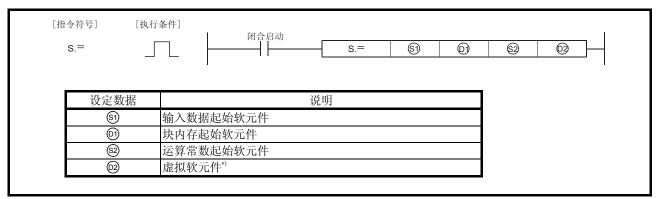
设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值1	-999999 至 999999	_	实数	_	U
刊/文 3/16	+2 +3	E2	输入值 2	-999999 至 999999	_	实数	_	U
	©1+0 +1	BW	输出值	(和输入值 1(E1)相同的值被存储)	_	实数	_	S
		BB		_				
块内存	+2	BB1	比较输出	b15 b12 b8 b4 b0 B B B 1 (E1和E2的比较结果保存并输出)		BIN 16 位	l	S
云質 尚粉	\$2+0 +1	K	设值	-999999 至 999999	_	实数	0.0	U
运算常数 -	+2 +3	HS	滞后	0 至 999999		实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1)比较输入值 1(E1)和输入值 2(E2),比较结果输出至存储区的 BB1 中。

条件	BB1
E1 < (E2+K)	1
$E1 \ge (E2+K+HS)$	0
$(E2+K) \leq E1 < (E2+K+HS)$	输出为上一次的值


错误

● 当滞后值为负数

12 - 4 12 - 4

12.3 等值比较(S.=)

		可用软元件									
设定 数据		次元件 . 用户)	文件寄存器		CNET/H J[]\[]	智能功能模块 [[]]\G[]	变址寄存器 Zn	常数 K, H	其它		
	位	字		位	字	坎 [[] [[]	ZII	Ν, 11			
§ 1	_		0		-						
© 1	=			-							
<u>\$2</u>		0		_							
D2	=					=	_				

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

比较输入值1(E1)和输入值2(E2),输出为比较结果。

12 - 5 12 - 5

错误代码: 4100

控制数据

(1) 数据由 S. =指令设定

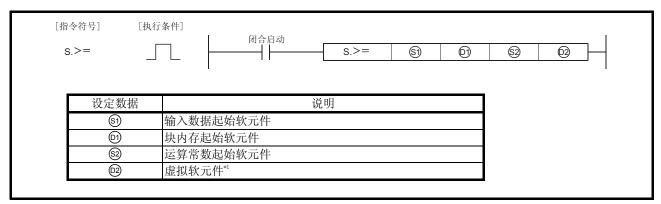
设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值1	-999999 至 999999	_	实数	_	U
- 相/ \ 女人 7/1	+2 +3	E2	输入值 2	-999999 至 999999		实数	_	U
	(D)+0 +1	BW	输出值	(和输入值 1 (E1) 相同的值被存储)		实数		S
		BB		_				
块内存	+2	BB1	比较输出	b15 b12 b8 b4 b0 B B B 1 (E1和E2的比较结果保存并输出)	_	BIN 16 位	_	S
运算常数	\$2+0 +1	K	设值	-999999 至 999999	_	实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1)比较输入值1(E1)和输入值2(E2),比较结果输出至存储区的BB1中。

条件	BB1
E1 = (E2 + K)	1
$E1 \neq (E2 + K)$	0


错误

● 当一个运算错误发生时

12 - 6 12 - 6

12.4 大于或等于比较(S.>=)

		可用软元件									
设定 数据		飲元件 , 用户)	文件寄存器	MELSECNET/H 方向 J[]\[]		智能功能模 块 UE 3\GE3	变址寄存器 Zn	常数 K, H	其它		
	位	字		位	字	大 UL 」 UL 」	211	11, 11			
§ 1	_		0		-						
© 1		(-							
S 2		0		_							
© 2		(=	=				

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

比较输入值1(E1)和输入值2(E2),输出为比较结果。

12 - 7 12 - 7

控制数据

(1) 数据由 S. >=指令设定

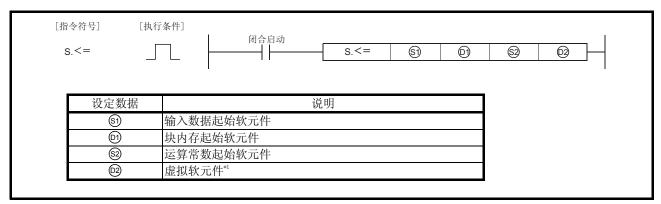
设定位	置	符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值1	-999999 至 999999	_	实数		U
+2 +3		E2	输入值 2	-999999 至 999999	_	实数		U
	©1+0 +1	BW	输出值	(和输入值 1 (E1) 相同的值被存储)	_	实数		S
		BB		-				
块内存	+2	BB1	比较输出	b15 b12 b8 b4 b0 B B B 1 (E1和E2的比较结果保存并输出)	-	BIN 16 位	I	S
运算常数	\$2+0 +1	K	设值	-999999 至 999999	_	实数	0.0	U
心 昇币数	+2 +3	HS	滞后	0至 999999	_	实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1)比较输入值 1(E1)和输入值 2(E2),比较结果输出至存储区的 BB1 中。

条件	BB1
E1 ≥ (E2+K)	1
E1 < (E2+K - HS)	0
$(E2+K - HS) \le E1 < (E2+K)$	输出为上一次的值


错误

● 当滞后值为负数 错误代码: 4100

12 - 8 12 - 8

12.5 小于或等于比较(S. <=)

		可用软元件								
设定 数据		次元件 ,用户)	文件寄存器	MELSECNET/H 方向 JE XE]		智能功能模	变址寄存器 Zn	常数 K, H	其它	
	位	字		位	字	犬 ()に」()に」	ZII	Ν, 11	<u> </u>	
S1	_	(0		-					
(D1)	=	(0		-					
S 2		0		_						
D2	=	0				_	=			

*1: 特殊寄存器 SD1506 可以被设定为虚拟软元件。

功能

比较输入值1(E1)和输入值2(E2),输出为比较结果。

12 - 9 12 - 9

错误代码: 4100

控制数据

(1) 数据由 S. <=指令设定

设定位置		符号	名称	建议范围*1	单位	数据格式	标准值	存储
输入数据	\$1+0 +1	E1	输入值1	-999999 至 999999		实数		U
· 村川ノ〜女父 1/白	+2 +3	E2	输入值 2	-999999 至 999999	_	实数	_	U
	©1+0 +1	BW	输出值	(和输入值 1 (E1) 相同的值被存储)	_	实数	_	S
		BB						
块内存	+2	BB1	比较输出	b15 b12 b8 b4 b0 B B B B I 1 (E1和E2的比较结果保存并输出)	l	BIN 16 位	l	S
运算常数	\$2+0 +1	K	设值	-999999 至 999999	_	实数	0.0	U
心 开币数	+2 +3	HS	滞后	0 至 999999	_	实数	0.0	U

^{*1:} 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。

执行过程

(1)比较输入值 1(E1)和输入值 2(E2),比较结果输出至存储区的 BB1 中。

条件	BB1
E1 ≦ (E2+K)	1
E1 > (E2 + K + HS)	0
$(E2+K) < E1 \le (E2+K+HS)$	输出为上一次的值

错误

● 当运算错误发生时

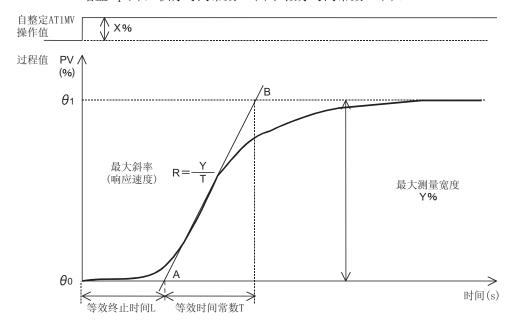
12 - 10 12 - 10

13

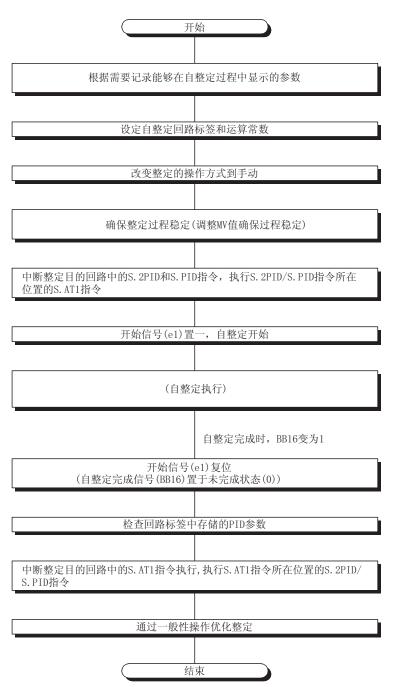
13 自整定

自整定是被设计用来初始化 PID 常数的。

QnPHCPU/QnPRHCPU 的自整定可用于类似于以下公式表示的 1 次延迟加上空载时间的过程。例如:响应相对缓慢的温度调节过程

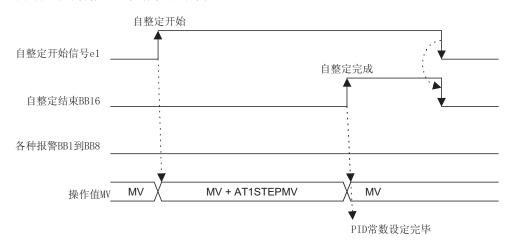

K: 比例系数, T: 时间常数, L: 终止时间, s: 拉普拉斯算子

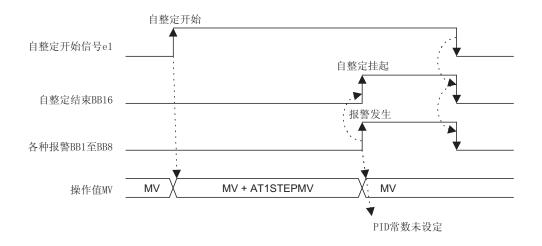
自整定可被用于使用 S. PID 或 S. 2PID 指令的循环中。


自整定在 ZN 过程中体现: 齐格勒和尼古拉斯的步进响应过程。 [步进响应的概要]

没有控制运算执行时,分步改变操作值(MV),来观察测定量(PV)的变化。

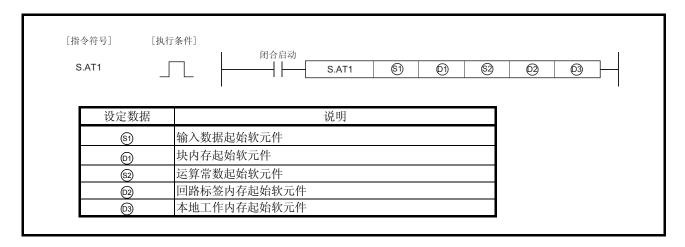
- 1) 当操作值一步步改变时,测定量(PV)开始变化很慢。接着,测定量(PV)开始变化很快, 之后变化又慢下来,最后稳定在一固定值。
- 2) 在测定量 (PV) 变化最大的地方画一条切线,使他和水平方向轴有两个交点 A 和 B,对应于初值 (θ 0) 和终值 (θ 1) ,如下图所示,同时在图中还可以读出等效终止时间 (L) 和等效时间常数 (T) 的大小。
- 3) 从等效时间常数(T)和最大测定量(Y)可以计算出最大斜率(响应速度)R = Y/T,应用等效终止时间(L)和最大响应速度(R),利用齐格勒和尼古拉斯调节法则,可以计算出比例增益 Kp(P),积分时间常数 TI(I)和微分时间常数 TD(D)。


13 - 1 13 - 1


13

13 - 2 13 - 2

(1) 自整定开始至正常结束的时序图



(2) 自整定开始至报警而结束的时序图

13.1 自整定指令 (S. AT1)

	可用软元件									
设定 数据		改元件 用户)	文件寄存器		CNET/H J[]\[]	智能功能模	变址寄存器 Zn	常数 K, H	其它	
	位字			位	字	── 玦 (). 」 (). 」	Zn	Λ, П		
§ 1	-	0								
© 1	-	(0		_					
<u>\$2</u>	_	0		_						
©2	_	0		_						
©3	-	- 0				=	=			

功能

执行自整定并初始 PID 常数。

13 - 4 13 - 4

控制数据

(1)数据由S. AT1 指令设定

设定位	设定位置 符号 名称 建议范围*1		名称	建议范围*1	单位	数据格式	标准值	存储
	\$1+0 +1	E1	输入值	-999999 至 999999	%	实数		U
输入数据	+2	e1	自整定开始信 号	0: Stop/end 1: Start		BIN16 位	0	U
		BB		_		ı		
块内存	© +0	BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8 BB16	报警输入上限报警输入下限报警输出上限报警输出下限报警输出下限报警超时报警运行方式报警识别报警自整定完成	b15 b12 b8 b4 b0 B B B B B B B B B	_	BIN16 位	-	S
运算常数	<u>\$2</u> +0	PN	运行方式	0: 反向运算 1: 正向运算	_	BIN16 位	0	U
	©2+1	MODE	运行方式	0至FFFFH b15 b12 b8 b4 b0		BIN16 位	8н	S/U
回路标签内存	+3	ALM	报警探测	b15 b12 b8 b4 b0 S PA HH L H L H L H L H L H L H L H L H L H	_	BIN16 位	4000н	S/U
	+12 +13	MV	操作值	-10 至 110	%	实数	0.0	S/U
	+18 +19	MH	输出上限值	-10 至 110	%	实数	100. 0	U
	+20 +21	ML	输出下限值	-10至110	%	实数	0.0	U

^{*1:}条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。 *2:回路标签内存和回路标签过去值寄存器共占用 128 字的空间。(见 3. 3. 1 节详细说明。)

13 - 5 13 - 5

设定位	立置	符号 名称 建议范围"		建议范围*1	单位	数据格式	标准值	存储	
	©2+52 +53	Р	比例系数	0 至 999999		-	实数	1.0	S/U
	+54 +55	I	积分常数	0至999999		S	实数	10. 0	S/U
	+56 +57	D	微分常数	0至999999		S	实数	0.0	S/U
回路标签 内存* ²	+70 +71	AT1 STEP MV	AT1 的步进操 作值	-100 至 100		%	实数	0.0	U
	+72 +73	AT1ST	AT1 的采样循 环周期	0至999999	注意 <u>AT1ST</u> ≦32767	S	实数	1.0	U
	+74 +75	AT1 TOUT1	AT1 的超时设 定值	0 至 999999	注意 AT1TOUT1 ≤ 32767	S	实数	100.0	U
	+76 +77	AT1 TOUT2	AT1 在最大斜 率后的超时设 定	0 至 999999	注意 AT1TOUT2 ΔT ≦ 32767	S	实数	10. 0	U
本地工作 内存*3	63+0 : +21	_	系统区	被系统用作工作区。		_	_	_	S

- *1: 条目中的数据在建议的范围内,并且在括号内,是由系统存储,用户是不能设定的。
- *2: 回路标签存储区和回路标签过去值存储区共占用 128 字的空间。(见 3. 3. 1 节详细说明。) *3: 回路标签过去值的应用在以下简要说明。

设定位置	内容
§3)+()	采样周期计数器初始化预设标志
+1	采样周期计数器
+2	超时时间计数器初始化预设标志
+3	超时时间计数器
+4	最大斜率后超时时间计数器预设标志
+5	最大斜率后超时时间计数器
+6	步进操作值预设标志
+7	自整定开始计数器
+8	 自整定开始时间 PV0
+9	
+10 +11	PV _{n-1} (最后的测定量)
+11	
+13	最大斜率值
+14	最大斜率-时间计数器
+15	取入科学 - 門 門 川 奴 倫
+16	 最大斜率–时间 PV
+17	***\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+18	R(响应速度)
+19	
+20	L(等效终止时间)
+21	

当控制从初始状态开始后,数据必须被随后的程序清除。

(2) 执行周期(△T)

在 SD1500 和 SD1501 以实数形式设定执行周期。

13 - 6 13 - 6

进程内容

(1) 启动信号判别进程

下列的任一处理过程都依赖于自整定开始信号(e1)和自整定完成信号(BB16)。

e1	BB16	进程
0	0	BB2 至 BB8 变为 0。 当步进操作值预设标志为 1 时,下列进程被执行。 MV = MV - AT1STEPMV S. AT1 指令终止。
1	0	"(2)回路停止进程"被执行。
0	1	BB16 变为 0。 S. AT1 指令终止。
1	1	S. AT1 指令终止。

(2) 回路停止进程

- (a)报警探测(ALM)中的 SPA 置 1,从而选择循环停止。 回路停止进程执行以下操作并终止 S. AT1 指令。
 - 1) 自整定结束标志(BB16)变为1。
 - 2) 当步进操作值预设标志为1,以下的进程被执行。

$$MV = MV - AT1STEPMV$$

(b)报警探测(ALM)中的 SPA 置 0,从而选择回路执行。 在回路中执行"(3)方式判别进程"。

(3) 方式判别进程

下列任一进程的执行依赖于运算方式(MODE)的设定。

- (a) 当运算方式 (MODE) 是 AUT, CAB, CAS, CCB, CSV, LCA 和 LCC 的任一时,以下操作被执行并终止 S. AT1 指令。
 - 1) 运算方式报警位(BB7) 变为 1。
 - 2) 自整定结束位(BB16)变为1。
 - 3) 当步进操作值预设标志为1,以下操作被执行。

```
MV = MV - AT1STEPMV
```

(b) 当运算方式 (MODE) 是 MAN, CMB, CMV 和 LCM, 的任一时, "(4) 输入检测进程"被执行。

(4) 输入检测进程

下列任一进程的执行依赖于报警探测的(ALM)设置。

- (a) 当(ALM) 中的 PHA 和 HHA 任一个为 1, 下列操作被执行并且 S. AT1 指令终止。
 - 1) 输入值上限报警位(BB2)变为1。
 - 2) 自整定结束标志位(BB16)变为1。
- (b)报警探测(ALM)中的PLA和LLA任一个为1,下列操作被执行并且S. AT1指令终止。
 - 1) 输入值下限报警位(BB3)变为1。
 - 2) 自整定结束标志位(BB16)变为1。

(5) 超时判别进程

判断自整定时间是否已经至了AT1超时时间(AT1 TO UT1)。

- (a) 当 AT1 超时时间(AT1 TO UT1)到达时,以下进程被执行并且 S. AT1 指令终止。
 - 1) 超时报警位(BB6)变为1。
 - 2) 自整定结束标志位(BB16)变为1。
- (b)当 AT1 超时时间(AT1 TO UT1)没有至时, "(6)最大斜率后超时判别进程"被执行。

(6) 最大斜率后超时判别进程

判断 AT1 最大斜率后的时间(AT1 TO UT2)是否到了最大斜率后超时时间。

然而, 当最大斜率后超时时间计数器的预设值为 0 时, 下边进程(c)被执行。

- (a) 如果 AT1 达至最大斜率后超时时间(AT1 TO UT2), "(10)识别进程"被执行。
- (b) 如果 AT1 没有达至最大斜率后超时时间(AT1 TO UT2), "(7) 步进操作值设定进程"被执行。
- (c) 如果最大斜率后超时时间计数器预设标志为 0, "(7) 步进操作值设定进程"被执行。

(7) 步进操作值设定进程

从步进操作值预设标志判别预设操作值为"设定(1)"或"未设(0)"。

- (a) 如果步进操作值预设标志为 0, 以下操作被执行并且 S. AT1 指令终止。
 - 1) AT1 步进操作值(AT1STEPMV)加至操作值(MV)中。

T1 = MV + AT1STEPMV

13 - 9

在高/低值限值器中,下列操作被执行并且操作结果送入 BB4 和 BB5 中。

条件			结果		经过高/低限制器后的操作	
米 日	BB4	BB5	BB16	MV	经过间/ 以限制备/目的採用	
T1 > MH	1	0	1	未变的初始 MV	S. AT1 指令终止	
T1 < ML	0	1	1	未变的初始 MV	2. 411 1日 夕公正	
$ML \leq T1 \leq MH$	0	0	0	T1	2) 中和其后的操作被执行	

- 2) 步进操作值预设标志变为1。
- 3) 从自整定开始的计数器清零。
- 4) 输入值(E1) 存入自整定开始时间的 PV0。
- 5) 输入值(E1) 存入最终测定量(PV_{n-1})。
- 6) 最大斜率值,最大斜率时间计数器,最大斜率时间 PV,响应速度(R)和等价终止时间(L)被清零。
- (b) 如果步进操作值预设标志为1"(8) 采样周期判别进程"被执行。

(8) 采样周期判别进程

从AT1 采样周期标志(AT1ST)中判别是否到了采样周期。

- (a) 如果采样周期没有到达, S. AT1 指令被终止。
- (b) 如果采样周期到达,"(9) 响应曲线观测进程"被执行。

(9) 响应曲线观测进程

对输入值(E1)进行下列操作。

- (a) 响应曲线观测
 - 1) 自整定开始时启动的计数器值递增。
 - 2) 对应于输入值(E1)和最终测定量(PVn-1),下列操作被执行。

反向运算(PN = 0)	$T2 = E1 - PV_{n-1}$
正向运算(PN = 1)	12 — E1 1 Vn-1

3) 输入值(E1)被存入最终测定量(PVn-1)。

(b) 最大斜率值

依赖于斜率(T2),下列操作被执行并且S. AT1 指令终止。

1) 如果反向运算执行 (PN = 0) 并且 AT1 步进操作值 (AT1STEPMV) \ge 0 或正向运算执行 (PN = 1) 并且 AT1 步进操作值 (AT1STEPMV) < 0

条件	操作
最大斜率值 ≦ 斜率(T2)	 最大斜率值 = 斜率(T2) 最大斜率时间计数器 = 从自整定开始的计数值 最大斜率时间的 PV = 输入值(E1) 最大斜率后超时计数值重启并开始重新计数。
最大斜率值 > 斜率(T2)	最大斜率值保持最后的值不变。

2) 如果正向运算被执行 (PN = 1) 并且 AT1 步进操作值 (AT1STEPMV) \ge 0 或反向运算被 执行 (PN = 0) 并且 AT1 步进操作值 (AT1STEPMV) < 0

条件	操作
最大斜率值 ≧ 斜率(T2)	● 最大斜率值 = 斜率(T2)
	● 最大斜率时间计数器 = 从自整定开始的计数值● 最大斜率时间的 PV = 输入值(E1)
	● 最大斜率后超时计数值 I 重启并开始重新计数。
最大斜率值 < 斜率(T2)	最大斜率值保持最后的值不变。

(10) 识别进程

利用最大斜率值,以下操作被执行。

(a) 响应速度

1) 计算响应速度(R')和响应速度(R)用下列公式计算。

$$R' = \frac{$$
最大斜率值 $(\%)$ $}{AT1ST}$, $R = \frac{|R'|}{100}$ $(/s)$

2) 如果 R ≤ 0, 下列操作被执行并且 S. AT1 指令终止。

识别报警标志(BB8)变为1。

自整定结束标志(BB16)变为1。

当步进操作值预设标志为1,以下操作被执行。

MV = MV - AT1STEPMV

(b) 等效终止时间

1) 当切线从计算响应速度点画出时, Y 轴的线段(b)和终止时间(L)由下列公式计算得到。

b = (最大斜率时间 PV) - R' × (最大斜率记数) × AT1ST
$$L = \frac{(自整定开始时间 PV0) - b}{R'}$$

2) 如果 L ≤ 0, 下列操作被执行, 并且 S. AT1 指令终止。 识别报警标志(BB8)变为 1。

自整定结束标志(BB16)变为1。

当步进操作值预设标志为1,下列操作被执行。

$$MV = MV - AT1STEPMV$$

(11) PID 常数计算操作

响应速度(R),等效终止时间(L)和 AT1 步进操作值(AT1STEPMV)被赋予至调节法则中去计算 PID 常数。

(a) 控制系统

根据积分常数 Ti (I)和微分常数 To (D),控制系统被选择。

积分常数 Tī(I)	微分常数 Tp(D)	控制方法
$T_{\rm I} \leq 0$	_	仅比例控制(P运算)
T _I > 0	T _D ≦ 0	PI 控制(PI 运算)
	$T_D > 0$	PID 控制 (PID 运算)

(b) 调节法则

ZN 过程:基于齐格勒和尼古拉斯步进响应的调节法则。

控制方法	比例系数 Kp (P)	积分常数 Tī(I)	微分常数 TD (D)	
Р	$\frac{1}{R \times L} \times \frac{ AT1STEPMV }{100}$	0	0	
PI	$\frac{0.9}{R \times L} \times \frac{ AT1STEPMV }{100}$	3.33 × L	0	
PID	$\frac{1.2}{R \times L} \times \frac{ AT1STEPMV }{100}$	2 × L	0.5 × L	

(c) PID 常数存储

下列操作被执行并且 S. AT1 指令终止。

- 1) PID 常数储存在比例系数(P), 积分常数(I)和微分常数(D)中。
- 2) 自整定结束标志位(BB16)变为1。
- 3) 操作值(MV)减去 AT1 步进操作值(AT1STEPMV), 结果存储至操作值(MV)中。

MV = MV - AT1STEPMV

错误

当运算错误发生时。 错误代码: 4100

13 - 12 13 - 12

14

14 错误代码

本章描述了 QnPHCPU/QnPRHCPU 中发生的出错的内容以及相应处理方法。

14.1 错误代码列表

下列过程控制指令的错误代码。

● 运算中途发生错误的错误代码: 4100

当运算错误发生时(错误代码: 4100),详细的错误代码存于SD1502和SD1503中。

● SD1502: 在过程控制指令中发生的错误代码

● SD1503: 发生错误的指令的处理编号

如果在过程控制指令中发生"OPERATION ERROR (错误代码: 4100)",在上述寄存器中可得到详细的信息。

表 14.1 在过程控制指令中发生的错误代码(存于 SD1502)

错误代码	错误定义	原因	处理
1	存在一个非数字的或格式不对的数。	设定的数据,例如操作常数、回	检查并纠正设定的数据。
2	符号位错 (数字为负数)	路标签内存、回路标签过去值寄 存器、或执行周期存在问题。	
3	数字错误 (数字超过范围)		
4	超过整数范围		
5	0除。		
6	溢出。		

表 14.2 发生错误的指令的处理编号(存于 SD1503)

处理编号 指令	1	2	3	4	5	6	7	8
S. IN	范围检查	输入限制器	工程值反变 换	数字滤波				
S. OUT1	输入加法处 理	变化率,高 /低值限制 器	积分饱和	输出转换处 理				
S. OUT2		变化率,高 /低值限制 器		输出转换处 理				

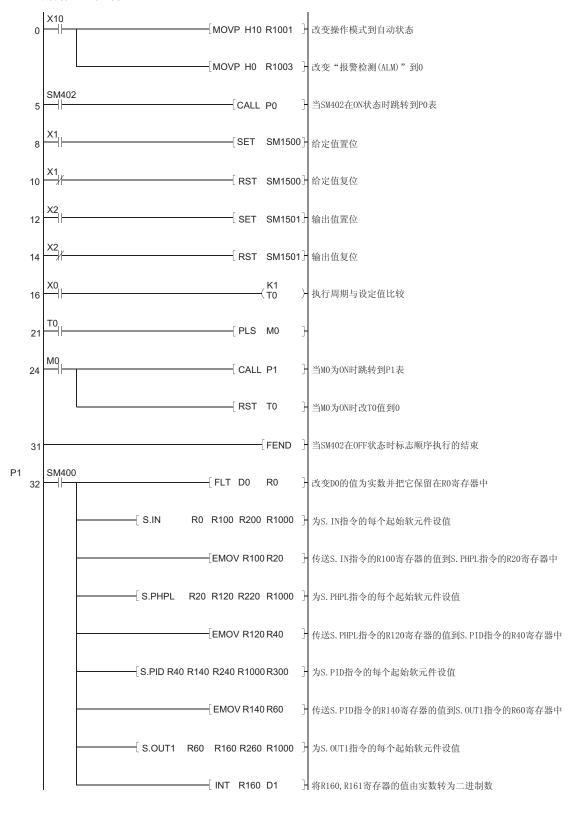
14 - 1 14 - 1

表 14.2 发生错误的指令的处理编号(存于 SD1503)

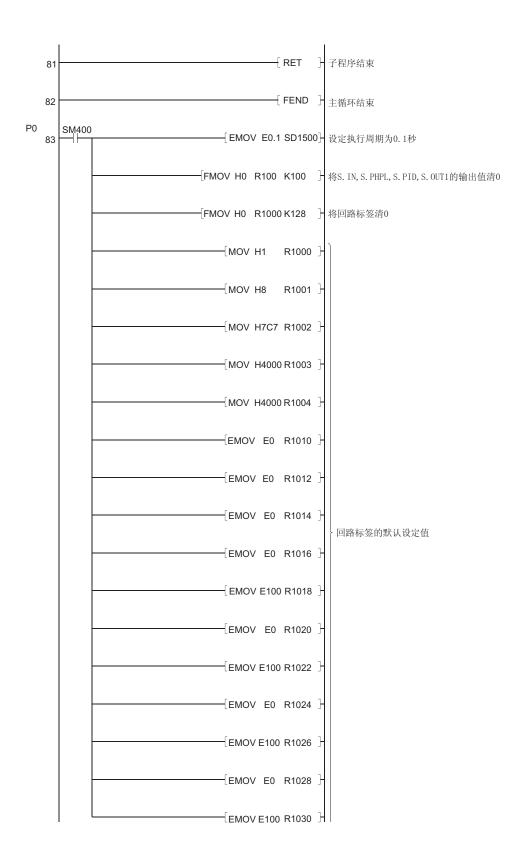
处理编号 指令	1	2	3	4	5	6	7	8
S. DUTY	输入加法处 理	变化率,高 /低值限制 器	积分饱和	ON 时间转换 处理	输出转换处 理			
S. BC	高值检查	变化率检查	输出转换处 理					
S. PSUM	输入值递增 处理	累加值运算	输出转换处 理					
S. PID	控制周期判断	SV 设定处理	跟踪处理	增益运算 (Kp)	PID运算	偏差检测		
S. 2PID	控制周期判 断	SV 设定处理	跟踪处理	增益运算 (Kp)	PID 运算 1) *1	PID 运算 2) *2	PID 运算 3) *3	偏差检测
S. PIDP	控制周期判 断	SV 设定处理	跟踪处理	增益运算 (Kp)	PIDP 运算	偏差检测	变化率,高 /低值限制 器	输出转换处 理
S. SPI	运算时间监 视	SV 设定处理	跟踪处理	增益运算 (Kp)	SPI 运算	偏差检测		
S. IPD	控制周期判 断	SV 设定处理	跟踪处理	增益运算 (Kp)	IPD 运算	偏差检测		
S. BPI	控制周期判 断	SV 设定处理	跟踪处理	增益运算 (Kp)	BPI 运算	偏差检测		
S. R	控制周期判 断	工程值变换	跟踪处理	变化率限制 器	比率运算			
S. PHPL	工程值反变 换	上/下限检查	变化率检查	工程值变换	回路停止			
S. ONF2	控制周期判 断	SV 设定处理	跟踪处理	MV 补偿	MV 输出	2-位置 0N/0FF 控制		
S. ONF3	控制周期判 断	SV 设定处理	跟踪处理	MV 补偿	MV 输出	3-位置 0N/0FF 控制		
S. PGS	控制周期判 断	SV 增计数处 理	MVPGS 运算	输出处理				
S. SEL	工程值变换	E1/E2 选择 处理	工程值反变 换	变化率,高 /低值限制 器	输出转换处 理	跟踪处理		
S. AT1	输入检测	超时判别	最大斜率后 超时时间	步进处理值 设定	采样周期判 别	响应曲线观 测	识别进程	PID 常数计 算

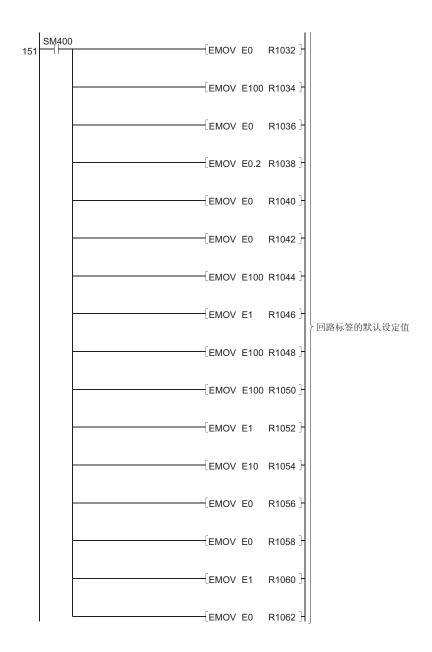
*1: 说明 Bn 或 Cn 的运算处理过程。

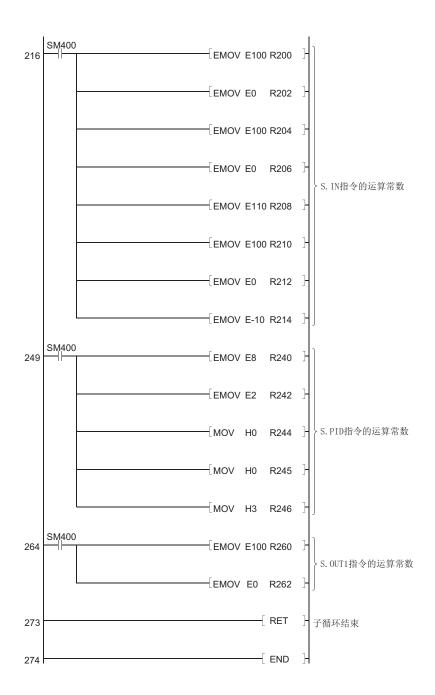
*2: 说明 Dn 的运算处理过程。


*3: 说明△MV 的运算处理过程。

指令操作中发生的错误处理编号 No. 1,没有包含在上表中。


附录


附录 1 范例程序


在下图中,运算模式在上电状态下切换至手动模式。打开"X10 ON"并选择"AUTO(自动模式)", 开始 PID 控制。

附录 2 回路标签内存表

附录 2.1 PID 控制(SPID)2 个自由度 PID 控制(S2PID)采样 PI 控制(SSPI)

环路标签内存表

						数据存储		
指令	偏移	条目	名称	建议范围	单位	SPID S2PID	SSPI	
	+0		_	_	_	_	=	
	1	MODE*1	运算模式	0至 FFFF _H		S/U	S/U	
	2 3	ALM*1	ー <u>ー</u> 报警检测	— — — 0 至 FFFFH	_	S/U	S/U	
	4	INH*1	报警检测禁止	0至FFFF _H	<u> </u>	S/U	S/U	
	5		一	<u> </u>	_	— —	_	
	6	_	_	_	_	_		
	7	_	-	_	_	_	_	
	8		=	_		_	_	
	9	_	_	_		_	_	
S. PHPL	10 11	PV	测量值	(RL 至 RH)	_	S	S	
S. OUT1/S. DUTY	12 13	MV	操作值	-10 至 110	%	S/U	S/U	
S. PID/S. 2PID/ S. SPI	14 15	SV	设定值	RL 至 RH	_	U	U	
S. PID/S. 2PID/ S. SPI	16 17	DV	偏差	(-110 至 110)	%	S	S	
S. OUT1/S. DUTY	18 19	МН	输出值上限	-10 至 110	%	U	U	
S. OUT1/S. DUTY	20 21	ML	输出值下限	-10 至 110	%	U	U	
S. PHPL/S. PID/ S. 2PID/S. SPI	22 23	RH	工程值上限	-999999 至 999999	_	U	U	
S. PHPL/S. PID/ S. 2PID/S. SPI	24 25	RL	工程值下限	-999999 至 999999	_	U	U	
S. PHPL	26 27	PH	上限报警设定值	RL 至 RH PL < PH	_	U	U	
S. PHPL	28 29	PL	下限报警设定值	RL 至 RH PL < PH	_	U	U	
S. PHPL	30 31	НН	上上限报警设定值	RL至RH PH ≦ HH	_	U	U	
S. PHPL	32 33	LL	下下限报警设定值	RL 至 RH LL ≦ PL	_	U	U	
	34 35	_	_	_	_	_	_	
	36 37	_	_	_	_	_	_	
S. IN	38 39	α	滤波器系数	0至1	_	U	U	
S. PHPL	40 41	HS	上/下限报警迟滞死区	0至999999	%	U	U	
S. PHPL	42 43	CTIM	变化率报警检测时间设定 值	0 至 999999	S	U	U	
S. PHPL	44 45	DPL	变化率报警设定值	0至100	%	U	U	
S. PID/S. 2PID/ S. SPI	46 47	CT/ST	控制周期/运算时间	0 至 999999	S	U(设定 CT)	U(设定 ST)	

						数据	存储
指令	偏移	条目	名称	建议范围	单位	SPID S2PID	SSPI
S. OUT1/S. DUTY	48 49	DML	输出变化率限制值	0至100	%	U	U
S. PID/S. 2PID/ S. SPI	50 51	DVL	偏差限制值	0至100	%	U	U
S. PID/S. 2PID/ S. SPI	52 53	Р	比例增益	0至999999	_	U	Ū
S. PID/S. 2PID/ S. SPI/S. OUT1/ S. DUTY	54 55	I^{*2}	积分常数	0 至 999999	S	U	U
S. PID/S. 2PID/ S. SPI	56 57	D/STHT	微分常数/采样周期	0 至 999999	S	U (D 设置)	U (STHT 设置)
S. PID/S. 2PID/ S. SPI	58 59	GW	脉冲宽度	0至100	%	U	U
S. PID/S. 2PID/ S. SPI	60 61	GG	脉冲增益	0至999999	_	U	U
S. PID/S. 2PID/ S. SPI/S. 0UT1/S. D UTY	62 63	MVP	MV 内部运算值	(-999999 至 999999)	%	S	S
S. 2PID	64 65	α	2 自由度参数	0至1	_	U	_
S. 2PID	66 67	β	2 自由度参数	0至1	_	U	-
S. DUTY	68 69	CTDUTY	控制输出周期	0 至 999999	s	U	_

要占

- 标注*1的 MODE, ALM 和 INH 在所有的指令中含义相同。
- 在下列指令中标注*2 的具有相同的值。
 - S. PID 指令和 S. OUT1 指令
 - S. PID 指令和 S. DUTY 指令
 - S. 2PID 指令和 S. 0UT1 指令
 - S. 2PID 指令和 S. DUTY 指令
 - S. SPI 指令和 S. OUT1 指令

附录 2.2 I-PD 控制(SIPD), 混合 PI 控制(SBPI)

环路标签内存表

指令	偏移	条目	名称	建议范围	单位	数据存储	
111 4	VIII 129	か口	11/1/		十四	SIPD	SBPI
	+0		_	_		_	
	1	MODE*1	运算模式	0至FFFF _H		S/U	S/U
	2						
	3	ALM*1	报警检测	0至FFFF _H		S/U	S/U
	4	INH*1	报警检测禁止	0至FFFFH		S/U	S/U
	5	=	_	_		_	_
	6		_	_			=
	7 8						_
	9					<u> </u>	_
	10						
S. PHPL	11	PV	测量值	(RL 至 RH)	_	S	S
C OUT	12	107	+= /L /±	10 75 110	0/	C/II	C /II
S. 0UT1	13	MV	操作值	-10 至 110	%	S/U	S/U
S. IPD/S. BPI	14	SV	设定值	RL 至 RH		U	U
	15	٥٧	以足恒	IL 主 III	_		U
S. IPD/S. BPI	16	DV	偏差	(-110 至 110)	%	S	S
6. 11 b, 6. bi 1	17		yrdzr	(110 1.110)	,,,		5
S. OUT1	18	MH	输出值上限	-10 至 110	%	U	U
	19						
S. OUT1	20 21	ML	输出值下限	-10 至 110	%	U	U
S. PHPL/S. IPD/	22						
S. BPI	23	RH	工程值上限	-999999 至 999999	_	U	U
S. PHPL/S. IPD/	24						
S. BPI	25	RL	工程值下限	-999999 至 999999	_	U	U
	26	DII		RL至RH		**	**
S. PHPL	27	PH	上限报警设定值	PL < PH	_	U	U
S. PHPL	28	PL	下限报警设定值	RL 至 RH		U	U
S. FIIFL	29	LL	下附加音以是但	PL < PH		U	U
S. PHPL	30	HH	上上限报警设定值	RL 至 RH		U	U
5. 1 III L	31	1111	工工队队员权之伍	PH ≦ HH			0
S. PHPL	32	LL	下下限报警设定值	RL至RH	_	U	U
	33			LL ≦ PL			
	34 35	_	_	_	_		_
	36						
	37	_	_	_	_	_	_
	38						
S. IN	39	α	滤波器系数	0至1	_	U	U
G DUDI	40			a 7 000000	0/	**	**
S. PHPL	41	HS	上/下限报警迟滞死区	0至999999	%	U	U
S. PHPL	42	CTIM	变化率报警检测时间设定	0 至 999999	s	U	U
3. I IIFL	43	OTIM	值	U ± 333333	8	U	U
S. PHPL	44	DPL	变化率报警设定值	0至100	%	U	U
5.11m b	45		A TOTAL WILL	5 <u>1.</u> 100	/0		Ü
S. IPD/S. BPI	46	CT	控制周期/运算时间	0 至 999999	S	U	U
, ===	47				-		-

指令	偏移	条目	名称	建议范围	单位	数据	存储
1日.人	加州化乡	水口	4170	建议范围	平世	SIPD	SBPI
S. OUT1	48 49	DML	输出变化率限制值	0至100	%	U	U
S. IPD/S. BPI	50 51	DVL	偏差限制值	0至100	%	U	U
S. IPD/S. BPI	52 53	Р	比例增益	0至 999999	_	U	U
S. IPD/S. BPI S. OUT1	54 55	I^{*2}	积分常数	0至 999999	S	U	U
S. IPD/S. BPI	56	D/SDV	微分常数/采样周期	D : 0至 999999	S	U	_
5. 1FD/ 5. DF1	57	עט /ע	1成万币数/木件户别	SDV: -999999 至 999999	%	_	S
S. IPD/S. BPI	58 59	GW	脉冲宽度	0至100	%	U	U
S. IPD/S. BPI	60 61	GG	脉冲增益	0 至 999999	_	U	U
S. IPD/S. OUT1	62 63	MVP	MV 内部运算值	(-999999 至 999999)	%	S	_

要点

- 标注*1 的 MODE, ALM 和 INH 在所有的指令中含义相同。
- 在下列指令中标注*2 的具有相同的值
 - S. IPD 和 S. OUT1
 - S. BIP和S. OUT1

附录 2.3 手动输出(SMOUT), 监视器(SMON)

环路标签内存表

指令偏	偏移	条目	名称	建议范围	单位	数据	存储
18 4	VHI 139		1117		干匹	SMOUT	SMON
	+0	_	_	_	_	_	1
	1	MODE*1	运算模式	0至FFFFH	-	S/U	S/U
	2		_	_			
	3	ALM*1	报警检测	0至FFFFH		S/U	S/U
	4	INH*1	报警检测禁止	0至 FFFFH			S/U
	5	_	_	_		<u> </u>	_
	6		_	_			
	7		_	_			_
	8		_	_			
	9		_	_	-		=
S. PHPL	10 11	PV	测量值	(RL 至 RH)	_	_	S
S. MOUT	12 13	MV	操作值	-10 至 110	%	U	_
	14 15	_	_	_	_	=	
	16 17		_	_	_	<u> </u>	_
	18 19	_	_	_	_		_
	20	_	_	_		_	
S. PHPL	21 22 23	RH	工程值上限	-999999 至 999999	_	_	U
S. PHPL	24 25	RL	工程值下限	-999999 至 999999	_		U
S. PHPL	26 27	PH	上限报警设定值	RL 至 RH PL < PH	_	_	U
S. PHPL	28 29	PL	下限报警设定值	RL 至 RH PL < PH	_	_	U
S. PHPL	30 31	НН	上上限报警设定值	RL至RH PH ≦ HH	_	_	U
S. PHPL	32 33	LL	下下限报警设定值	RL 至 RH LL ≦ PL	-	_	U
	34 35	_	-	_	-	_	_
	36 37	_	_	_	_	_	_
S. IN	38 39	α	滤波器系数	0至1	_	_	U
S. PHPL	40 41	HS	上/下限报警迟滞死区	0 至 999999	%	_	U
S. PHPL	42 43	CTIM	变化率报警检测时间设定 值	0至 999999	S	_	U
S. PHPL	44 45	DPL	变化率报警设定值	0至100	%	_	U
	46 47	_	_	_		_	_

要点

● 标注*1 的 MODE, ALM 和 INH 在所有的指令中含义相同。

附录 2.4 带监视器的手动输出(SMWM), PIDP 控制(SPIDP)

环路标签内存表

指令	偏移	条目	名称	建议范围	单位	数据存储		
1日.4	7/11/12/9		石柳	建议范围	平江	SMWM	SPIDP	
	+0	_	_	_	_	_	_	
	1	MODE*1	运算模式	0至 FFFF _H		S/U	S/U	
	2		Let #M6-1 A Net I	_	_		_	
	3	ALM*1	报警检测	0至FFFF _H	_	S/U	S/U	
	4	INH*1	报警检测禁止	0至FFFFH	_	S/U	S/U	
	5		=	_	_	_		
	6		_	_	_		_	
	7	_	_	_			_	
	8 9		<u> </u>	_	_	_	_	
	10		-	-	_		_	
S. PHPL	11	PV	测量值	(RL 至 RH)	_	S	S	
S. MOUT/S. PIDP	12 13	MV	操作值	-10 至 110	%	U	S/U	
S. PIDP	14 15	SV	设定值	RL 至 RH	_	_	U	
S. PIDP	16 17	DV	偏差	(-110至110)	%	_	S	
S. PIDP	18 19	MH	输出值上限	-10 至 110	%	_	U	
S. PIDP	20 21	ML	输出值下限	-10 至 110	%	_	U	
S. PHPL/S. PIDP	22 23	RH	工程值上限	-999999 至 999999	_	U	U	
S. PHPL/S. PIDP	24 25	RL	工程值下限	-999999 至 999999	_	U	U	
S. PHPL	26 27	PH	上限报警设定值	RL 至 RH PL < PH	_	U	U	
S. PHPL	28 29	PL	下限报警设定值	RL至RH PL < PH	_	U	U	
S. PHPL	30 31	НН	上上限报警设定值	RL至RH PH ≦ HH	_	U	U	
S. PHPL	32 33	LL	下下限报警设定值	RL至RH LL≦PL	_	U	U	
	34 35		_		_		_	
	36 37			_	_	_	_	
S. IN	38 39	α	滤波器系数	0至1	_	U	U	
S. PHPL	40 41	HS	上/下限报警迟滞死区	0 至 999999	%	U	U	
S. PHPL	42 43	CTIM	变化率报警检测时间设定 值	0 至 999999	S	U	U	
S. PHPL	44 45	DPL	变化率报警设定值	0至100	%	U	U	
S. PIDP	46 47	CT	控制周期	0 至 999999	S	_	U	

指令	偏移	多条目	名称	建议范围	单位	数据存储	
1日で	加州的	米 日	石 你	建以花园	平位	SMWM	SPIDP
S. PIDP	48 49	DML	输出变化率限制值	0至100	%		U
S. PIDP	50 51	DVL	偏差限制值	0至100	%		U
S. PIDP	52 53	P	比例增益	0至999999	1	ı	U
S. PIDP	54 55	Ι	积分常数	0至999999	S	I	U
S. PIDP	56 57	D	微分常数/采样周期	0至999999	S	ı	U
S. PIDP	58 59	GW	脉冲宽度	0至100	%		U
S. PIDP	60 61	GG	脉冲增益	0至999999	_	_	U

要点

● 标注*1 的 MODE, ALM 和 INH 在所有的指令中含义相同。

附录 2.5 2 位 ON/OFF 控制(SONF2), 3 位 ON/OFF 控制(SONF3)

环路标签内存表

指令	偏移	条目	名称	建议范围	单位	数据存储	
111 4	VIII 129	- か日	11/1/	足风福田	十匹	SONF2	SONF3
	+0		_	_	_	<u> </u>	_
	1	MODE*1	运算模式	0至FFFFH		S/U	S/U
	2		_	=		_	
	3	ALM*1	报警检测	0至FFFFH		S/U	S/U
	4	INH*1	报警检测禁止	0至FFFFH		S/U	S/U
	5	_	=	-		_	
	6	_	_	=		_	_
	7		_	_		_	_
	8	_	_	=		_	_
	9		_	=			
S. PHPL	10 11	PV	测量值	(RL 至 RH)		S	S
S. ONF2/S. ONF3	12 13	MV	操作值	-10 至 110	%	S/U	S/U
S. ONF2/S. ONF3	14 15	SV	设定值	RL至RH	_	U	U
S. ONF2/S. ONF3	16 17	DV	偏差	(-110 至 110)	%	S	S
S. ONF2/S. ONF3	18 19	HS0	迟滞死区	0至 999999	_	U	U
S. 0NF3	20 21	HS1	迟滞死区	0至 999999	-	_	U
S. PHPL	22 23	RH	工程值上限	-999999 至 999999	_	U	U
S. PHPL	24 25	RL	工程值下限	-999999 至 999999	_	U	U
S. PHPL	26 27	PH	上限报警设定值	RL至RH PL < PH	_	U	U
S. PHPL	28 29	PL	下限报警设定值	RL至RH PL < PH	_	U	U
S. PHPL	30 31	НН	上上限报警设定值	RL至RH PH ≦ HH	_	U	U
S. PHPL	32 33	LL	下下限报警设定值	RL 至 RH LL ≦ PL	_	U	U
	34 35	_	_	_	_	_	_
	36 37	_	_	_	_	_	_
S. IN	38 39	α	滤波器系数	0至1	_	U	U
S. PHPL	40 41	HS	上/下限报警迟滞死区	0至999999	%	U	U
S. PHPL	42 43	CTIM	变化率报警检测时间设定 值	0至999999	S	U	U
S. PHPL	44 45	DPL	变化率报警设定值	0至100	%	U	U
S. 0NF2/S. 0NF3	46 47	CT	控制周期	0 至 999999	S	U	U

要点

● 标注*1的 MODE, ALM 和 INH 在所有的指令中含义相同。

附录 - 12 附录 - 12

附录 2.6 选组计数器(SBC)

环路标签内存表

指令	偏移	条目	名称	建议范围	单位	数据存储
相令	1冊1多	余日	石桥	建以池田	半型	SBC
	+0	_	_	_	_	_
	1	MODE*1	运算模式	0至FFFF _H	_	S/U
	2	ALM*1	+17 \$50 +14 Not		_	— —
	3 4	INH*1	报警检测 报警检测禁止	0至FFFFH 0至FFFFH		S/U S/U
	5		1以音位例示止	U 主 ITITH	<u> </u>	
	6	_	_	_	_	_
	7	_	_	_	_	_
	8	_	_	_	_	_
	9	_	_	_	_	_
S. PSUM	10 11	SUM1	累加值(整数部分)	(0 至 2147483647)	_	S
S. PSUM	12 13	SUM2	累加值(小数部分)	(0 至 2147483647)	_	S
S. BC	14 15	SV1	设定值1	0至2147483647	_	U
S. BC	16 17	SV2	设定值 2	0至2147483647	_	U
	18 19	_	_	_	_	_
	20 21	_	_	_	_	_
	22 23	_	_	_	_	_
	24 25	_	_	_	_	_
S. BC	26 27	РН	上限报警设定值	0至2147483647	_	Ū
	28 29	_	_	_	_	_
	30 31	_	_	_	_	_
	32 33	_	_	_	_	_
	34 35	_	_	_	_	_
	36 37	_	_	_	_	_
	38 39	_	_	_	_	_
	40 41	_	_	-	_	_
S. BC	42 43	CTIM	变化率报警检测时间设定 值	0至999999	S	U
S. BC	44 45	DPL	变化率报警设定值	0至2147483647	_	U
	46 47	_	_	_	_	_

要点

● 标注*1 的 MODE, ALM 和 INH 在所有的指令中含义相同.

附录 2.7 比率控制(SR)

回路标签内存表

指令	偏移	条目	名称	建议范围	单位 —	数据存储
1日で	7周79	米 日	石 柳	建以范围	平位.	SR
	+0		_	_		_
	1	MODE*1	运算模式	0 至 FFFFH		S/U
	2		LET #86 LA NEJ			
	3	ALM*1	报警检测	0至FFFF _H		S/U
	4	INH*1	报警检测禁止	0至FFFFH		S/U
	5 6			_		_
	7		_	_	 - 	_
	8				 	
	9					_
C DUDI	10	DV		/pi ろpii)		
S. PHPL	11	PV	测量值	(RL 至 RH)	_	S
S. 0UT2	12 13	MV	操作值	-10 至 110	%	S/U
S. R	14 15	SPR	设定值	-999999 至 999999		U
S. R	16 17	BIAS	偏移量	-999999 至 999999	%	U
S. 0UT2	18 19	MH	输出上限值	-10 至 110	%	U
S. 0UT2	20 21	ML	输出下限值	-10 至 110	%	U
S. PHPL	22 23	RH	工程值上限	-999999 至 999999	_	U
S. PHPL	24 25	RL	工程值下限	-999999 至 999999	_	U
S. PHPL	26 27	PH	上限报警设定值	RL 至 RH PL < PH	_	U
S. PHPL	28 29	PL	下限报警设定值	RL 至 RH PL < PH	_	U
S. PHPL	30 31	НН	上上限报警设定值	RL 至 RH PH ≦ HH	_	U
S. PHPL	32 33	LL	下下限报警设定值	RL 至 RH LL ≦ PL	_	U
	34 35	_	_	_	_	_
	36 37	_	_	-	_	_
S. IN	38 39	α	滤波器系数	0至1	_	U
S. PHPL	40 41	HS	上/下限报警迟滞死区	0至999999	%	U
S. PHPL	42 43	CTIM	变化率报警检测时间设定 值	0至999999	S	U
S. PHPL	44 45	DPL	变化率报警设定值	0至100	%	U
S. R	46 47	CT	控制周期	0 至 999999	S	U

指令	偏移	条目	名称	建议范围	单位	数据存储 SR
S. 0UT2	48 49	DML	输出变化率限值	0至100	%	U
S. R	50 51	DR	变化率限值	0 至 999999	-	U
S. R	52 53	RMAX	比率上限值	-999999 至 999999	_	U
S. R	54 55	RMIN	比率下限值	-999999 至 999999	_	U
S. R	56 57	Rn	比率当前值	(-999999 至 999999)	_	S

要点

● 标注*1 的 MODE, ALM 和 INH 在所有的指令中含义相同。

附录3运算处理时间

附录 3.1 每条指令的运算处理时间

每条指令的运算处理时间在这一页以及随后的一页中表示出来,因为指令处理时间因为设置条件 的不同而不同,在下表中查阅指令处理时间作为参考

指令	条件	处理时间(微秒)
S. IN	回路运行过程中 ALM 不在 ON 状态	69
S. OUT1	回路运行在 AUT 模式下 ALM 不在 ON 状态	44
S. OUT2	回路运行在 AUT 模式下 ALM 不在 ON 状态	29
S. MOUT	回路运行过程中在 MAN 模式下执行	27
S. DUTY	执行周期 = 1,控制输出周期 = 10 回路运行在 AUT 模式下 ALM 不在 ON 状态	53
S. BC	回路运行在 AUT 模式下 ALM 不在 ON 状态	29
S. PSUM	积分开始信号 = 0N 积分保持信号 = 0FF	23
S. PID	设定值模式 = 3(无级联) 跟踪位 = 0 执行周期 = 控制周期 = 1 积分常数 ≠ 0 微分常数 ≠ 0 在 AUT 模式下并且 ALM 关闭时回路运行时的条件	94
S. 2PID	设定值模式 = $3(无级联)$ 跟踪位 = 0 执行周期 = 控制周期 = 1 积分常数 $\neq 0$ 微分常数 $\neq 0$ 在 AUT 模式下并且 ALM 不在 ON 状态时回路运行时的条件	135
S. PIDP	设定值模式 = $3(无级联)$ 跟踪位 = 0 执行周期 = 控制周期 = 1 积分常数 $\neq 0$ 微分常数 $\neq 0$ 在 AUT 模式下并且 ALM 不在 0 N 状态时回路运行时的条件	115
S. SPI	设定值模式 = 3(无级联) 跟踪位 = 0 运算时间 = 采样时间(ST = STHT) 积分常数 ≠ 0 在 AUT 模式下并且 ALM 不在 ON 状态时回路运行时的条件	87
S. IPD	设定值模式 = $3(无级联)$ 跟踪位 = 0 执行周期 = 控制周期 = 1 积分常数 $\neq 0$ 微分常数 $\neq 0$ 在 AUT 模式下并且 ALM 不在 $0N$ 状态时回路运行时的条件	76
S. BPI	设定值模式 = $3(无级联)$ 跟踪位 = 0 执行周期 = 控制周期 = 1 积分常数 $\neq 0$ 在 AUT 模式下并且 ALM 不在 $0N$ 状态时回路运行时的条件	72

指令	条件	处理时间(微秒)
	设定值模式 = 3(无级联)	
	跟踪位 = 0	
S. R	执行周期 = 控制周期 = 1	58
	在 AUT 模式下回路状态已执行	
S. PHPL	在 AUT 模式下并且 ALM 不在 ON 状态时环路运行时的条件	100
	输入值 = 50, 有超前-滞后保证	
S. LLAG	超前时间 = 1, 滞后时间 = 1	27
S. I	输出初始值 = 0	14
	输入值 = 50, 微分时间 = 1	
S. D	输出初始值 = 0	16
	输入值 = 50	
	运算控制信号 0 → 1	
	数据采集间隔 = 1	
S. DED	采样计数值 = 10	17
	输出初始值 = 0	
	初始的输出切换 = 0	
0.110	输入值个数 = 5	00
S. HS	输入值 = 50, 100, 150, 200, 250	29
CIC	输入值个数 = 5	20
S. LS	输入值 = 50, 100, 150, 200, 250	32
S. MID	输入值个数 = 5	39
S. MID	输入值 = 50, 100, 150, 200, 250	39
S. AVE	输入值个数 = 2,输入值 = 50, 100	24
	输入值 = 50	
	上限值 = 100	
S.LIMT	下限值 = 0	30
	上限迟滞死区 = 0	
	下限迟滞死区 = 0	
	输入值 = 50	
	正方向限值 = 100	
S. VLMT1	负方向限值 = 100	25
	正方向迟滞死区 = 0	
	负方向迟滞死区 = 0	
	输入值 = 50	
C VI MTO	正方向限值 = 100	97
S. VLMT2	负方向限值 = 100 正方向迟滞死区 = 0	27
	正方向返滞死区 = 0	
		+
	和八直 - 10 设定值模式 = 3(无级联)	
S. ONF2	以た直接式 — 3(元级状) 跟踪位 = 0	52
5. 011 2	执行周期 = 控制周期 = 1	02
	在 MAN 模式下环路状态已执行	
S. 0NF3	输入值 = 10	
	设定值模式 = 3(无级联)	
	跟踪位 = 0	59
	执行周期 = 控制周期 = 1	
	在 MAN 模式下环路状态已执行	
	输入值 = 50	
C DDND	死区上限 = 100, 死区下限 = 0	26
S. DBND	输入低切割值 = 0, 初始值 = 0	20
	输入范围 = 1	

指令	条件	处理时间(微秒)
111 4	运算常数拓扑点的个数 = 16	762E9114 (1907)
	运算类型 = 0(保持类型)	
S. PGS	执行周期 = 1	18
	设定值 = 10	
	在 AUT 模式下并且 ALM 不在 ON 状态时回路运行时的条件	
	设定值模式 = 18H(E1, E2 已用, 无级联)	
S. SEL	跟踪位 = 0	68
	在 AUT 模式下并且 ALM 不在 ON 状态时回路运行时的条件	
	输出设定值 = 0,输出控制值 = 50	
S. BUMP	模式选择信号 = 1	18
	延迟时间 = 1,延迟区 = 1	
	输出附加值 = 50, 输出减少值 = 50	
S. AMR	输出设定值 $= 0$,输出信号 $= 1$	17
	输出附加信号 $= 1$,输出减少信号 $= 0$ 输出上限值 $= 50$,输出下限值 $= 0$	
S. FG		
S. IFG	五 相外值 — 30, 相升点的十级 — 2 拓扑点(30, 40), (60, 70)	33
	输入数据 = 50, 数据采集间隔 = 1	
S. FLT	- 30, 数指 (未) 円	36
	输入数据 = 50	
S. SUM		16
	输入范围 = 1	
	温度和压力都正确。	
	压力偏差 = 100, 测量温度 = 300	
S. TPC	测量到的压力 = 10000,设计温度 = 0	39
S. 11 C	偏移(温度) = 273.15	39
	设计压力 = 0	
	压力偏移 = 10332.0	
S. ENG	→ 输入数据 = 50, 工程值上限 = 100	25
S. IENG	工程值下限 = 0	
S. ADD		25
	系数个数 = 2 , 系数 = 1 , 1 , 偏移 = 0 输入个数 = 2 , 输入数据 = 50 , 100	
S. SUB		26
S. MUL	$ = \frac{1}{30} $ $ = $	23
	输入数据 = 50,100	
S. DIV	系数 = 1, 1, 1, 偏移 = 0, 0, 0	26
a aan	输入数据 = 50	0.0
S. SQR	输出低切割值 = 0, 系数 = 10	30
S. ABS	输入数据 = 50	13
S. >	输入数据 = 50, 100	18
5. /	设定值 = 0, 迟滞死区 = 0	18
S. <	输入数据 = 50,100	18
J. \	设定值 = 0, 迟滞死区 = 0	10
S. =	输入数据 = 50,100	16
J.	设定值 = 0	10
S.>=	输入数据 = 50,100	18
	设定值 = 0, 迟滞死区 = 0	
S. <=	输入数据 = 50,100	18
	设定值 = 0, 迟滞死区 = 0	
	设定值模式 = 3(无级联) 跟踪位 = 0	
S. AT1		67
	在 MAN 模式下回路中已执行	
	E were 1/25/1 1 1-11/11	

附录 3.2 2 个自由度 PID 控制回路的运算处理时间

本节对每条指令运算常数以及在实际值存入回路标签内存的情况下所需处理时间举例进行说明。

(1) 回路类型和所用的指令

(a) 回路类型: S2PID

(b) 所用指令: S. IN, S. PHPL, S. 2PID, S. 0UT1

(2) 运算常数

(a) S. IN 指令

名称	条目	设定
工程变换上限	EMAX	100.0
工程变化下限	EMIN	0.0
输入上限	NMAX	100.0
输入下限	NMIN	0.0
发生错误的上限范围	НН	95.0
上限范围的错误返回	Н	80.0
下限范围的错误返回	L	20.0
发生错误的下限范围	LL	5. 0

(b) S. PHPL 指令:无运算常数

(c) S. 2PID 指令

名称	条目	设定
偏差增益	MTD	4. 0
偏差报警最大迟滞死区	DVLS	3. 0
运算模式	PN	0
跟踪位	TRK	0
设定值模式	SVPTN	3

(d) S. OUT1 指令

名称	条目	设定
输出变换上限	NMAX	100.0
输出变换下限	NMIN	0.0

(3) 环路标签内存

偏移	条目	名称	建议范围	设定
+0	_	_	_	0
+1	MODE	运算模式	0至 FFFF _H	10н
+2	=	_	_	0
+3	ALM	报警检测	0至FFFF _H	0
+4	INH	报警检测禁止	0至FFFF _H	0
+5	=	_	_	0
+6	=	_	_	0
+7	=	_	_	0
+8	_	_	_	0
+9	_	_	_	0
+10	PV	测量值	RL 至 RH	0.0
+12	MV	操作值	-10 至 110	0.0
+14	SV	设定值	RL 至 RH	55. 0
+16	DV	偏差	-110 至 110	7
+18	MH	输出上限值	-10 至 110	100.0
+20	ML	输出下限值	-10 至 110	0.0
+22	RH	工程值上限	-999999 至 999999	100.0
+24	RL	工程值下限	-999999 至 999999	0.0
+26	PH	上限报警设定值	RL 至 RH	80.0
+28	PL	下限报警设定值	RL 至 RH	20.0
+30	НН	上限报警值	RL 至 RH	90.0
+32	LL	下限报警值	RL 至 RH	10.0
+34	_	_	_	0
+36	_	_	_	0
+38	α	滤波器系数	0至1	0.0
+40	HS	上/下限报警死区	0 至 999999	3.0
+42	CTIM	变化率报警检测时间	0 至 999999	8. 0
+44	DPL	变化率报警值	0至100	30.0
+46	CT	控制周期	0 至 999999	1.0
+48	DML	输出变化率限值	0至100	100.0
+50	DVL	偏差限制值	0至100	25. 0
+52	P	增益	0至999999	3. 0
+54	Ι	积分常数	0至999999	8.0
+56	D	微分常数	0至999999	5. 0
+58	GW	脉冲宽度	0至100	15. 0
+60	GG	脉冲增益	0至999999	2.0
+62	MVP	MV 内部运算值	-999999 至 999999	0. 25
+64	α	2-自由度参数α	0至1	0.0
+66	β	2-自由度参数β	0至1	1.0

(4) 处理时间

(a) 所用指令的处理时间

S. IN : 69μs
 S. PHPL : 100μs
 S. 2PID : 135μs
 S. OUT1 : 44μs

(b) 不同类型环路的处理时间

• S2PID : 348µs

索引

[数字]	DVLI(偏差放大报警禁止)3-8
2 个自由度 PID(S. 2PID) 9-9	低值报警(LLA)3-8
2 位 ON/OFF (S. ONF2) 9-83	低值报警(PLA)3-8
3 位 ON/OFF (S. ONF3)	低值报警禁止(LLI)3-8
	低值报警禁止(PLI)3-8
[A]	低值选择器(S. LS)9-70
ALM(报警检测)3-7	
AUT(自动)3-9	[F]
	反向运算1-5
[B]	反向变化率报警(DPNA)3-8
本地工作内存3-3	反向变化率报警禁止(DPNI)3-8
保持器(S. SUM)10-8	反向折线变换(S. IFG)10-3
报警检测(ALM)3-7	
报警检测禁止(INH)3-8	$\lceil G \rceil$
比率 (S. R)	 高/低值报警(S. PHPL)9-53
比例运算(P 运算)1-6	高/低值限制器(S. LIMT)9-77
变化率限制器 1 (S. VLMT1) 9-79	高高值报警(HHA)3-8
变化率限制器 2(S. VLMT2) 9-81	高高值报警禁止(HHI)3-8
标准滤波器(S. FLT)10-5	高值报警 (PHA)
74.1-100/2011	高值报警禁止(PHI)3-8
[C]	高值选择器(S. HS)
CAB(计算机自动备份)3-9	跟踪
CAS(级联)3-9	跟踪标签(TRKF)3-8
CCB(计算机级联备份)3-9	跟踪-跟踪功能5-2
CMB(计算机手动备份)3-9	工程值反变换(S. IENG)10-14
CMV (计算机 MV) 3-9	工程值变换(S. ENG)10-12
CSV (计算机 SV) 3-9	过程控制指令使用的数据3-4
采样 PI (S. SPI)	ZEEZ-MAIN (CONTRACTOR)
超前-滞后(S. LLAG)	[Н]
乘法(S. MUL)	HHA(高高值报警)3-8
程序设定软元件(S. PGS)9-97	HHI (高高值报警禁止)
程序样例	回路标签过去值内存3-5
除法(S. DIV)	回路标签内存列表
传感器报警(SEA)3-8	附录-5, 附录-7, 附录-9, 附录-11, 附录-13
传感器报警禁止(SEI)	回路类型2-6
错误代码列表14-1	回路内存3-4
ш Х (\	回路选择器5-3
[D]	回路选择器 (S. SEL)
D运算1-8	混合 PI 控制 (S. BPI)
DMLA(输出变化率限制报警)3-8	
DMLI(输出变化率限制报警禁止)3-8	[I]
DPNA(反向变化率报警)	I 运算
DPNI (反向变化率报警禁止)	INH(报警检测禁止)
DPPA(正向变化率报警)	I-PD 控制(S. IPD)
DPPI(正向变化率报警禁止)	τ το 1π th (ο. ττο)
DPF1(正向变化率报音崇正)	[1]
υν LA ()柵左 灰 人 収 音 /	[J]

お分(S. I) 9-61 前様送算 1-5 初分に算行と類別 1-7 本本PDIG. PID) 9-1 [R] 加法(S. SADO) 1.1-1 如何阅读指令 7-1 滅法(S. SUB) 11-3 防疾病液が乗 13-1 [S] 参対値(S. ANS) 11-11 S. <(比较) 12-3 以角(S. ANE) 9-75 S. <=(比较) 12-9 S. =(比较) 12-7 EN S. >=(比较) 12-1 LOT (本地投) 12-7 EN S. >=(比较) 12-1 LOT (本地投) 11-11 LOT (本地投) 3-9 S. ANS (総対仍) 11-11 LOT (本地接符) 3-9 S. ANE (均向) 9-75 LOT (本地接符) 3-9 S. ANE (均向) 9-75 LOT (本地接符) 3-8 S. BPI (混合 PI 控制) 9-41 LOT (本地接符) 3-8 S. BPI (混合 PI 控制) 9-41 LOT (本地接符) 3-8 S. BPI (混合 PI 控制) 9-41 MAN (手辺) 3-8 S. BPI (混合 PI 控制) 9-41 MAN (手辺) 3-9 S. DED (死区) 9-63 MAI (衛出低性保管性) 3-8 S. DIV (除法) 11-7 MIC (衛出低性保管性) 3-8 S. DIV (除法) 10-1 MIC (衛出低性保管性) 3-8 S. DIV (除法) 10-1 MIC (衛出代性保管性) 3-8 S. DIV (除法) 10-1 MIC (本社社代管性) 10-1 MIC (本社社代信任) 10-1 MIC (本社社代管性) 10-1 MIC (本社社代信任) 10-1 MIC (本社社代管性) 10-1 MIC (本社社代信任) 10-1 MIC (本社社代信任) 10-1 MIC (本社社代信任) 10-1 MIC (本社社代信任) 10-1 MIC (本社社代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代代	级联回路5-2	[Q]	
### ### ### ### ### ### ### ### ### ##	积分(S. I)9-61	前馈运算	1-5
加法(S. ADD) 11-1 如何阅读指令 7-1 減法(S. SLB) 11-3 ドド氏响应处理 13-1 [S]	积分运算(I 运算) 1-7		
破法(S. SIB) 11-3 阶跃响应处理 13-1 [S] 必対値(S. ANS) 11-11 S. <(比较) 12-3 と (比较) 12-5 E(K] S (比较) 12-5 [K] F (比较) 12-7 控制周期 4-1 S (比较) 12-7 控制周期 4-1 S (比较) 12-7 控制周期 4-1 S (上校) 12-7 反称(企成地自动化) 3-9 S. ARS (绝对价) 11-11 LCA (本地自动化) 3-9 S. ARS (绝对价) 9-110 LCA (本地自动化) 3-9 S. ART (自整定指令) 13-4 LCC (本地级联) 3-9 S. ART (自整定指令) 13-4 LCC (本地级联) 3-9 S. BC (选组计数器) 8-28 LLA (低值报警址) 3-8 S. BBW (还执动时绕) 9-108 S. D(磁分注) 9-108 S. D(磁分注) 9-108 S. D(磁分注) 9-58 MAN (手动) 3-9 S. DEO (死区时间) 9-65 MAN (手动) 3-9 S. DEO (死区时间) 9-65 MAN (無由低值报警址) 3-8 S. DIV(除法) 11-7 MII (输出高值报警址) 3-8 S. DIV(除法) 11-7 MII (输出高低值报警址) 3-8 S. DIV(除法) 11-7 MII (输出高低值报警址) 3-8 S. DIV(除法) 10-1 MA (输出的低值报警数 3-8 S. DIV(除法) 10-1 MDDE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. IS (高值选择器) 9-68 MDDE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. IS (高值选择器) 9-68 MDDE (运算模式) 3-8 S. IS (高值选择器) 9-68 MDDE (运算模式) 3-8 S. IS (CH电及变换) 10-3 (D) S. IX (表现的处理 8-1 OOPA (输出开路报警) 3-8 S. IND ((干型控护) 9-83 OOPI (输出开路报警) 3-8 S. IND ((干型控护) 9-72 PAG (流位银摩禁止) 3-8 S. LLM (底值银管器) 9-76 PLA (低值报警禁止) 3-8 S. MUT (平均排) 9-72 PHA (高值报警禁止) 3-8 S. MUT (平均排) 8-12 ME (值报警禁止) 3-8 S. MUT (平均排) 8-14 S. IX (低值报管禁止) 3-8 S. MUT (平均排) 8-17 ME (值报警禁止) 3-8 S. MUT (平均排) 8-17 ME (值报警禁止) 3-8 S. MUT (平均排) 8-17 ME (值报警禁止) 3-8 S. MUT (平均排) 8-14 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 42 下降的处理) 8-16 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 42 下降的处理) 8-16 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 42 下降的处理) 8-16 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 42 下降的处理) 8-16 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 42 下降的处理) 8-16 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 42 下降的处理) 8-16 ME 放大报警禁止 (DVLA) 3-8 S. MUT (平均排) 8-12 MA (流程 (在键数) 8-18 S. MUT (平均排) 8-12 ME 差别 (和T	基本 PID(S. PID) 9-1		
所浜响应处理	加法(S. ADD)11-1	如何阅读指令	7-1
## 対値 (S. ABS)	减法(S. SUB)11-3		
均値(S. AVE)	阶跃响应处理13-1	[S]	
S. = (比较) 12-5			
K S. >(比较) 12-1 开方(S. SQR) 11-9 S. >=(比较) 12-7 控制周期 4-1 S. 2PID(2 个自由度的PID) 9-9 块内存 3-6 S. ABS (絶対他) 11-11 LD S. AMD (加法) 11-1 LC (本地自动化) 3-9 S. AMT (接地内存) 9-110 LCA (本地自动化) 3-9 S. AMT (接地内存) 9-110 LCA (本地自动化) 3-9 S. AMT (均億) 9-75 LCM (本地操作) 3-9 S. AVT (均億) 9-75 LCM (本地操作) 3-9 S. BC (透绌计数器) 8-28 LLA (低值报警 3-8 S. BIMP (无比动切换) 9-14 LLI (低值报警禁止) 3-8 S. BIMP (无比动切换) 9-18 MAN(手动) 9-18 S. DEMD (死区) 9-95 MAN(手动) 3-9 S. DED (死区) 9-95 MAN(手动) 3-9 S. DED (死区) 9-95 MAN(毒油商值报警禁止) 3-8 S. DIVT (除法) 11-7 MII (输出商值报警禁止) 3-8 S. DIVT (除法) 11-7 MII (输出商值报警禁止) 3-8 S. DIVT (除法) 10-12 MLA (输出价值报警禁止) 3-8 S. FC (开线变换) 10-12 MLA (输出价值报警禁止) 3-8 S. FC (开线变换) 10-12 MLA (输出价值报警禁止) 3-8 S. FC (开线变换) 10-12 MLA (输出作值报警禁止) 3-8 S. FC (开线变换) 10-12 MLA (输出作值报警禁止) 3-8 S. FC (开线变换) 10-16 模拟输入处理(S. IN) 8-1 S. IENG (工程值更较) 10-3 K (高值选择器) 9-68 模拟由开路报警禁止) 3-8 S. IN (机构) 2 PIN (和) 3 PIN (和)	均值(S. AVE)9-75		
开方(S. SQR) 11-9 S. >=(比較) 12-7		· · · · · · · · · · · · · · · · · · ·	
控制周期. 4-1 S. 2PID (2 个自由度的 PID) 9-9 块内存. 3-6 S. ABS (绝对值) 11-11 S. ADD (加法) 11-11 ICL S. ADD (加法) 11-11 LCA (本地自动化) 3-9 S. ATI (自整定指令) 13-4 LCC (本地级联) 3-9 S. AVE (均值) 9-75 LCM (本地操作) 3-9 S. BC (选组计数器) 8-28 LLA (低值报警) 3-8 S. BUMP (无扰动切换) 9-108 MAN (手动) 3-8 S. BUMP (无扰动切换) 9-63 MM (手动) 3-9 S. DED (死区时间) 9-65 MAI (输出高值报警禁止) 3-8 S. DIV (除法) 11-7 MII (输出高值报警禁止) 3-8 S. DIV (除法) 11-7 MII (输出信值报警禁止) 3-8 S. DIV (除法) 10-12 MLA (输出信值报警禁止) 3-8 S. ENG (工程变换) 10-12 MLA (输出低值报警禁止) 3-8 S. ENG (工程变换) 10-12 ML (输出低值报警禁止) 3-8 S. ENG (工程变换) 10-14 ML (输出人位报警禁止) 3-8 S. ENG (工程变换) 10-12 ML (输出人位报警禁止) 3-8 S. ENG (工程变换) 10-12 ML (新维持等 3-8<			
块内存 3-6 S. ABS(绝对値) 11-11 S. ADD(加法) 11-1 LCA(本地自动化) 3-9 S. ATI (自整定指令) 9-110 LCC(本地级联) 3-9 S. AVE (均值) 9-75 LCM(本地報作) 3-9 S. DEC(选组计数器) 8-28 LLA (低值报管) 3-8 S. BDIM (混合 PT 控制) 9-41 LLI (低值报警禁止) 3-8 S. BDIM (混合 PT 控制) 9-63 S. D (微分法) 9-68 S. D (微分法) 9-69 MAN (手动) 3-9 S. DEDI (死区时间) 9-66 MA (输出高值报警禁止) 3-8 S. DUTY (时间率示例) 8-21 MLI (输出高值报警禁止) 3-8 S. DUTY (时间率示例) 8-21 MLI (输出低值报警禁止) 3-8 S. FO (扩接变换) 10-12 MLT (输出低值报警禁止) 3-8 S. FO (扩接变换) 10-12 MDE (运筹模式) 3-9 S. FLT (标准滤波器) 10-5 Mpt (存存 S. PSUA) 8-2 S. IS (高值选择器) 9-6 模拟和内存 (S. AMR) 9-10 S. I (银分法) 9-6 模拟输入处理 (S. IN) 8-1 S. IFG (反向折线变换) 10-14 基 (基) S. D (市场设施) 9-7 S.			
[L] S. ADD (加法) 11-1 LCA (本地自动化) 3-9 S. ATI (自整定指令) 13-4 LCC (本地級联) 3-9 S. AVE (均值) 9-75 LCM (本地操作) 3-9 S. BC (选维计数器) 8-28 LLA (低值报警) 3-8 S. BUMP (无扰动切换) 9-41 LLI (低值报警禁止) 3-8 S. BUMP (无扰动切换) 9-61 MAN (手动) 3-9 S. DEDO (死区) 9-95 MAN (手动) 3-9 S. DEDO (死区时间) 9-65 MHA (輸出高值报警) 3-8 S. DUTY (时间率示例) 8-21 MLA (输出低值报警) 3-8 S. DUTY (时间率示例) 8-21 MLI (输出低值报警禁止) 3-8 S. FO(行线变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FO(行线变换) 10-10 MDIC (运转模式) 3-9 S. FLT (标准滤波器) 10-5 McP(保持 (S. PSUM) 8-32 S. FO (打线变换) 10-1 K产内转移(交易) 9-110 S. T(保力分差) 9-61 模型的介存(S. AMR) 9-110 S. T(保力分差) 9-61 模型的介存(S. AMR) 9-110 S. T(限力分差) 9-61 反向 (输出所能整禁) 3-8 S. LIM (高速接) 9-7			
LCA (本地自动化) 3-9	块内存3-6		
LCA (本地自动化) 3-9 S. ATI (自整定指令) 13-4 LCC (本地级联) 3-9 S. AVE (均値) 9-75 LCM (本地操作) 3-9 S. DEC (选组计数器) 8-28 LLA (低值报警) 3-8 S. BPI (混合 PI P控制) 9-41 LLI (低值报警禁止) 3-8 S. BUMP (元扰动切换) 9-108 S. D (微分法) 9-63 S. D (微分法) 9-63 MAN(手动) 3-9 S. DED (死区 时间) 9-65 MIA (输出高值报警 3-8 S. D IV (除法) 11-7 MII (输出高值报警禁止) 3-8 S. D IV (除法) 11-7 MII (输出低值报警禁止) 3-8 S. D IV (除法) 10-12 MLI (输出低值报警禁止) 3-8 S. D IV (除法) 10-12 MLI (输出低值报警禁止) 3-8 S. ENG (工程值变换) 10-12 MLI (输出低值报警禁止) 3-8 S. F G (折线变换) 10-12 MLI (输出低值报警禁止) 3-8 S. F G (折线变换) 10-14 MODE (运贷模式) 3-9 S. F L T (标准滤波器) 10-5 MR冲保持 (S. P S L M M M M M M M M M M M M M M M M M M		W-11-1-	
LCC(本地級联) 3-9 S. AVE (均値) 9-75 LCM(本地操作) 3-9 S. BC (选组计数器) 8-28 LLA (低值报警) 3-8 S. BPI (混合 PI 控制) 9-41 LLI (低值报警禁止) 3-8 S. BUMP (无扰动切换) 9-108 S. D (微分法) 9-63 [M] S. DBND (死区) 9-95 MAN (手动) 3-9 S. DED (死区时间) 9-65 MHA (输出高值报警集止) 3-8 S. DUTY (时间率示例) 8-21 MLA (输出低值报警禁止) 3-8 S. DETY (時內率示例) 8-21 MLI (输出低值报警禁止) 3-8 S. FG (开线变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FG (开线变换) 10-14 MDE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持(S. PSUM) 8-32 S. IS (高值选择器) 9-68 模拟的存 (S. AMR) 9-110 S. IEN (工程值反变换) 10-14 以内存 (S. AMR) 9-110 S. IEN (工程值反变换) 10-14 发现有 (输出开路报警) 3-8 S. IEN (工程值及变换) 10-3 [0] S. IN (模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IEN (直接时间等局) 9-7 S. LLAG (超前 带后) <t< td=""><td></td><td></td><td></td></t<>			
LCM(本地操作) 3-9 S. BC(选组计数器) 8-28			
LLA(低值报警) 3-8 S. BPI(混合 PI 控制) 9-41 LLI(低值报警禁止) 3-8 S. BUMP (无扰动切换) 9-108 S. D(做分法) 9-63 MAN(手动) 3-9 S. DBND(死区) 9-95 MAN(事动) 3-9 S. DEO (死区时间) 9-65 MHA (输出高值报警) 3-8 S. DIVY (除法) 11-7 MHI (输出高值报警禁止) 3-8 S. DUTY (时间率示例) 8-21 MLI (输出低值报警禁止) 3-8 S. EGG (工程值变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FG (新线变换) 10-12 MODE (运算模式) 3-9 S. FIT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 10-5 模拟内存 (S. AMR) 9-110 S. I (极力法) 9-61 模拟输入处理 (S. IN) 8-1 S. IENG (工程值反变换) 10-14 S. IFO (反向打线变换) 10-3 S. IN (模拟输入处理) 8-1 [0] S. IN (模拟输入处理) 8-1 OOPA (输出开路报警禁止) 3-8 S. IPD (1-PD 控制) 9-37 S. LLAG (超前一滞后) 9-59 FP 1-6 S. MID (中位选择) 9-72 PHA (高值报警禁止) 3-8 S. MUT (等决计<	–	, ,	
LLI (低値报警禁止) 3-8 S. BUMP (无扰动切換) 9-108 S. D (微分法) 9-63 S. D (微分法) 9-63 MAN (手动) 3-9 S. D D (死区时间) 9-95 MAN (禁动) 3-9 S. D D D (死区时间) 9-65 MHA (輸出高值报警) 3-8 S. D UV (除法) 11-7 MHI (輸出高值报警禁止) 3-8 S. D UV (附法) 10-12 MLI (輸出低值报警禁止) 3-8 S. ENG (工程值变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FG (折线变换) 10-1 MODE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟输入处理(S. IN) 8-1 S. I ENG (工程值交变换) 10-14 ENT (其现输入处理(S. IN) 8-1 S. I ENG (工程值交变换) 10-14 S. IFO (反向折线变换) 10-3 S. IN (模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IPD (I - PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前"滞后) 9-59 EP S. LS (低值选择器) 9-70 PLA (低值报警) 3-8 S. MULT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MULT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MULT (秉动输出) 8-17 PHI (高值报警禁止) 3-8 S. MULT (秉动输出) 8-17 PHI (低值报警禁止) 3-8 S. MULT (秉动输出) 8-17 PHI (低值报警) 3-8 S. MULT (秉动输出) 8-17 PHI (低值报警禁止) 3-8 S. MULT (秉动输出) 8-16 (桶差放大报警校ULA) 3-8 S. OUT2 (在切换 1 模式下输出处理) 8-64 (桶差放大报警校ULA) 3-8 S. PES (程序设定较元件) 9-97 桶差运算(D运算) 1-8 S. PHD (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
M S. D(微分法) 9-63			
MAN(手动)	LLI(低值报警禁止)3-8		
MAN(手动) 3-9 S. DED(死区时间) 9-65 MHA (输出高值报警) 3-8 S. DIV (除法) 11-7 MHI (输出高值报警禁止) 3-8 S. DIV (除法) 11-7 MHI (输出高值报警禁止) 3-8 S. DUTY (时间率示例) 8-21 MLA (输出低值报警) 3-8 S. ENG (工程值变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FG (折线变换) 10-1 MDDE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟内存 (S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理 (S. IN) 8-1 S. I ENG (工程值反变换) 10-14 S. IFG (反向折线变换) 10-3 S. IN (模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IPD (I - PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前一滞后) 9-59 [P] S. LS (低值选择器) 9-70 P 运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MUL (乘法) 11-5 PHI (高值报警) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警禁止 (DVLA) 3-8 S. OUT2 (在切换 1 模式下输出处理) 8-6 偏差放大报警禁止 (DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差运算 (D 运算) 1-8 S. PHD (高/低值报警) 9-53 S. PID (基本 PID) 9-13	5.4		
MHA (輸出高值报警). 3-8 S. DIV (除法). 11-7 MHI (輸出高值报警禁止). 3-8 S. DUTY (时间率示例). 8-21 MLA (輸出低值报警). 3-8 S. ENG (工程值变换). 10-12 MLI (輸出低值报警禁止). 3-8 S. FG (折线变换). 10-12 MLI (輸出低值报警禁止). 3-8 S. FG (折线变换). 10-1 MODE (运算模式). 3-9 S. FLT (标准滤波器). 10-5 脉冲保持 (S. PSUM). 8-32 S. HS (高值选择器). 9-68 模拟内存 (S. AMR). 9-110 S. I (积分法). 9-61 模拟输入处理 (S. IN). 8-1 S. IENG (工程值反变换). 10-14 S. IFG (反向折线变换). 10-3 [0] S. IN (模拟输入处理). 8-1 00PA (输出开路报警). 3-8 S. IPD (I -PD 控制). 9-33 00PI (输出开路报警禁止). 3-8 S. LIMT (高/低值限制器). 9-77 S. LLAG (超前-滞后). 9-59 [P] S. LS (低值选择器). 9-70 P 运算. 1-6 S. MID (中值选择). 9-72 PHA (高值报警法). 3-8 S. MOUT (手动输出). 8-17 PHI (高值报警禁止). 3-8 S. MUL (乘法). 11-5 PID 运算. 1-9 S. ONF2 (2 位 ON/OFF). 9-83 PLA (低值报警, 3-8 S. OUT1 (在切换 1 模式下输出处理). 8-64 偏差放大报警 (D 运算). 1-8 S. PHPL (高/低值报警). 9-73 偏差运算 (D 运算). 1-8 S. PHPL (高/低值报警). 9-53 S. PID (基本 PID). 9-13			
MHI (输出高值报警禁止) 3-8 S. DUTY (时间率示例) 8-21 MLA (输出低值报警) 3-8 S. ENG (工程值变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FG (折线变换) 10-12 MLI (输出低值报警禁止) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟内存 (S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理 (S. IN) 8-1 S. IENG (工程值反变换) 10-14 S. IFG (反向折线变换) 10-3 [0] S. IN (模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IPD (I -PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前一滞后) 9-59 [P] S. LS (低值选择器) 9-70 P运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警禁止) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-83 PLA (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警供 (DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
MLA (输出低值报警) 3-8 S. ENG (工程值变换) 10-12 MLI (输出低值报警禁止) 3-8 S. FG (折线变换) 10-1 MODE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟内存 (S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理 (S. IN) 8-1 S. IENG (工程值反变换) 10-14 S. IFG (反向折线变换) 10-3 S. IN (模拟输入处理 (S. IN) 8-1 S. IENG (工程值反变换) 10-3 OOPA (输出开路报警) 3-8 S. IPD (I -PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前一滞后) 9-59 [P] S. LS (低值选择器) 9-70 P 运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警使DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
MLI (輸出低值报警禁止) 3-8 S. FG (折线変換) 10-1 MODE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟内存 (S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理 (S. IN) 8-1 S. IENG (工程值反变换) 10-14 S. IFG (反向折线变换) 10-3 S. IN (模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IPD (I-PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前-滞后) 9-59 [P] S. LS (低值选择器) 9-70 P运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警禁止 (DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-6 偏差放大报警禁止 (DVLA) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
MODE (运算模式) 3-9 S. FLT (标准滤波器) 10-5 脉冲保持 (S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟内存 (S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理 (S. IN) 8-1 S. IENG (工程值反变换) 10-14 S. IFG (反向折线变换) 10-3 [0] S. IN (模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IPD (I-PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前-滞后) 9-59 [P] S. LS (低值选择器) 9-70 P 运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF3 (3 位 ON/OFF) 9-83 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警禁止(DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差应算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-13			
脉冲保持(S. PSUM) 8-32 S. HS (高值选择器) 9-68 模拟内存(S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理(S. IN) 8-1 S. IENG (工程值反变换) 10-14 S. IFG (反向折线变换) 10-3 S. IN (模拟输入处理) 8-1 00PA (输出开路报警) 3-8 S. IPD (I-PD 控制) 9-33 00PI (输出开路报警禁止) 3-8 S. LIMT (高/值限制器) 9-77 S. LLAG (超前-滞后) 9-59 [P] S. LS (低值选择器) 9-70 P运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLI (低值报警) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警禁止(DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止(DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
模拟内存(S. AMR) 9-110 S. I (积分法) 9-61 模拟输入处理(S. IN) 8-1 S. IENG(工程值反变换) 10-14 S. IFG(反向折线变换) 10-3 S. IN(模拟输入处理) 8-1 OOPA (输出开路报警) 3-8 S. IPD(I-PD 控制) 9-33 OOPI (输出开路报警禁止) 3-8 S. LIMT(高/低值限制器) 9-77 S. LLAG(超前-滞后) 9-59 [P] S. LS(低值选择器) 9-70 P 运算 1-6 S. MID(中值选择) 9-72 PHA(高值报警) 3-8 S. MOUT(手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MUL(乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警(DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止(DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID(基本 PID) 9-1			
模拟输入处理(S. IN) 8-1 S. IENG(工程值反变换) 10-14 S. IFG(反向折线变换) 10-3 [0] S. IN(模拟输入处理) 8-1 00PA(输出开路报警) 3-8 S. IPD(I-PD 控制) 9-33 00PI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG(超前-滞后) 9-59 [P] S. LS(低值选择器) 9-70 P 运算 1-6 S. MID(中值选择) 9-72 PHA(高值报警) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MUL(乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA(低值报警) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警(DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止(DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
[0] S. IFG(反向折线变换) 10-3 00PA(输出开路报警) 3-8 S. IPD(I-PD 控制) 9-33 00PI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前-滞后) 9-59 [P] S. LS (低值选择器) 9-70 P 运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警(DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算(D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
[0] S. IN(模拟输入处理) 8-1 00PA(输出开路报警) 3-8 S. IPD(I-PD 控制) 9-33 00PI(输出开路报警禁止) 3-8 S. LIMT(高/低值限制器) 9-77 S. LLAG(超前-滞后) 9-59 [P] S. LS(低值选择器) 9-70 P 运算 1-6 S. MID(中值选择) 9-72 PHA(高值报警) 3-8 S. MOUT(手动输出) 8-17 PHI(高值报警禁止) 3-8 S. MUL(乘法) 11-5 PID 运算 1-9 S. ONF2(2 位 ON/OFF) 9-83 PLA(低值报警) 3-8 S. ONF3(3 位 ON/OFF) 9-89 PLI(低值报警禁止) 3-8 S. OUT1(在切换 1 模式下输出处理) 8-6 偏差放大报警(DVLA) 3-8 S. OUT2(在切换 2 模式下输出处理) 8-12 偏差运算(D 运算) 1-8 S. PID(基本 PID) 9-1	快拟制入处理(5.1N)8-1		
00PA(输出开路报警) 3-8 S. IPD(I-PD 控制) 9-33 00PI(输出开路报警禁止) 3-8 S. LIMT(高/低值限制器) 9-77 S. LLAG(超前-滞后) 9-59 EP] S. LS(低值选择器) 9-70 P 运算 1-6 S. MID(中值选择) 9-72 PHA(高值报警) 3-8 S. MOUT(手动输出) 8-17 PHI(高值报警禁止) 3-8 S. MUL(乘法) 11-5 PID 运算 1-9 S. ONF2(2位のN/OFF) 9-83 PLA(低值报警) 3-8 S. ONF3(3位のN/OFF) 9-89 PLI(低值报警禁止) 3-8 S. OUT1(在切换 1 模式下输出处理) 8-6 偏差放大报警(DVLA) 3-8 S. OUT2(在切换 2 模式下输出处理) 8-12 偏差运算(D 运算) 1-8 S. PGS(程序设定软元件) 9-97 偏差运算(D 运算) 1-8 S. PHPL(高/低值报警) 9-53 S. PID(基本 PID) 9-1	Γο]		
00PI (输出开路报警禁止) 3-8 S. LIMT (高/低值限制器) 9-77 S. LLAG (超前-滞后) 9-59 S. LS (低值选择器) 9-70 P 运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警 (DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
[P]S. LLAG (超前-滞后)9-59P运算1-6S. MID (中值选择)9-72PHA (高值报警)3-8S. MOUT (手动输出)8-17PHI (高值报警禁止)3-8S. MUL (乘法)11-5PID 运算1-9S. ONF2 (2 位 ON/OFF)9-83PLA (低值报警)3-8S. ONF3 (3 位 ON/OFF)9-89PLI (低值报警禁止)3-8S. OUT1 (在切换 1 模式下输出处理)8-6偏差放大报警 (DVLA)3-8S. OUT2 (在切换 2 模式下输出处理)8-12偏差放大报警禁止 (DVLI)3-8S. PGS (程序设定软元件)9-97偏差运算 (D 运算)1-8S. PHPL (高/低值报警)9-53S. PID (基本 PID)9-1			
[P]S. LS (低值选择器)9-70P运算1-6S. MID (中值选择)9-72PHA (高值报警)3-8S. MOUT (手动输出)8-17PHI (高值报警禁止)3-8S. MUL (乘法)11-5PID 运算1-9S. ONF2 (2 位 ON/OFF)9-83PLA (低值报警)3-8S. ONF3 (3 位 ON/OFF)9-89PLI (低值报警禁止)3-8S. OUT1 (在切换 1 模式下输出处理)8-6偏差放大报警 (DVLA)3-8S. OUT2 (在切换 2 模式下输出处理)8-12偏差放大报警禁止 (DVLI)3-8S. PGS (程序设定软元件)9-97偏差运算 (D 运算)1-8S. PHPL (高/低值报警)9-53S. PID (基本 PID)9-1	00P1(制出开路报警崇正)		
P 运算 1-6 S. MID (中值选择) 9-72 PHA (高值报警) 3-8 S. MOUT (手动输出) 8-17 PHI (高值报警禁止) 3-8 S. MUL (乘法) 11-5 PID 运算 1-9 S. ONF2 (2 位 ON/OFF) 9-83 PLA (低值报警) 3-8 S. ONF3 (3 位 ON/OFF) 9-89 PLI (低值报警禁止) 3-8 S. OUT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警 (DVLA) 3-8 S. OUT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1	ГаТ		
PHA (高值报警)3-8S. MOUT (手动输出)8-17PHI (高值报警禁止)3-8S. MUL (乘法)11-5PID 运算1-9S. ONF2 (2 位 ON/OFF)9-83PLA (低值报警)3-8S. ONF3 (3 位 ON/OFF)9-89PLI (低值报警禁止)3-8S. OUT1 (在切换 1 模式下输出处理)8-6偏差放大报警 (DVLA)3-8S. OUT2 (在切换 2 模式下输出处理)8-12偏差放大报警禁止 (DVLI)3-8S. PGS (程序设定软元件)9-97偏差运算 (D 运算)1-8S. PHPL (高/低值报警)9-53S. PID (基本 PID)9-1			
PHI (高值报警禁止)3-8S. MUL (乘法)11-5PID 运算1-9S. ONF2 (2 位 ON/OFF)9-83PLA (低值报警)3-8S. ONF3 (3 位 ON/OFF)9-89PLI (低值报警禁止)3-8S. OUT1 (在切换 1 模式下输出处理)8-6偏差放大报警 (DVLA)3-8S. OUT2 (在切换 2 模式下输出处理)8-12偏差放大报警禁止 (DVLI)3-8S. PGS (程序设定软元件)9-97偏差运算 (D 运算)1-8S. PHPL (高/低值报警)9-53S. PID (基本 PID)9-1			
PID 运算 1-9 S. 0NF2 (2 位 0N/0FF) 9-83 PLA (低值报警) 3-8 S. 0NF3 (3 位 0N/0FF) 9-89 PLI (低值报警禁止) 3-8 S. 0UT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警 (DVLA) 3-8 S. 0UT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
PLA (低值报警)3-8S. ONF3 (3 位 ON/OFF)9-89PLI (低值报警禁止)3-8S. OUT1 (在切换 1 模式下输出处理)8-6偏差放大报警 (DVLA)3-8S. OUT2 (在切换 2 模式下输出处理)8-12偏差放大报警禁止 (DVLI)3-8S. PGS (程序设定软元件)9-97偏差运算 (D 运算)1-8S. PHPL (高/低值报警)9-53S. PID (基本 PID)9-1			
PLI (低值报警禁止) 3-8 S. 0UT1 (在切换 1 模式下输出处理) 8-6 偏差放大报警 (DVLA) 3-8 S. 0UT2 (在切换 2 模式下输出处理) 8-12 偏差放大报警禁止 (DVLI) 3-8 S. PGS (程序设定软元件) 9-97 偏差运算 (D 运算) 1-8 S. PHPL (高/低值报警) 9-53 S. PID (基本 PID) 9-1			
偏差放大报警 (DVLA)3-8S. OUT2 (在切换 2 模式下输出处理)8-12偏差放大报警禁止 (DVLI)3-8S. PGS (程序设定软元件)9-97偏差运算 (D 运算)1-8S. PHPL (高/低值报警)9-53S. PID (基本 PID)9-1			
偏差放大报警禁止(DVLI) 3-8 S. PGS(程序设定软元件) 9-97 偏差运算(D运算) 1-8 S. PHPL(高/低值报警) 9-53 S. PID(基本 PID) 9-1			
偏差运算(D 运算)			
S. PID(基本 PID) 9-1			
	угч — — — — — — — — — — — — — — — — — — —		

S. PSUM(脉冲保持) S. R(比率)	9-48 9-102 9-26	位置型 PID (S. PIDP) 9-17 温度/压力补偿 (S. TPC) 10-10 无扰动切换 (S. BUMP) 9-108
S. SQR(开方) S. SUB(减法) S. SUM(保持)	11-3	[X] 选组计数器(S.BC)8-28
S. TPC (温度/压力补偿)		[Y]
S. VLMT1(变化率限制器 1)	9–79	运算模式(MODE)3-9
S. VLMT2(变化率限制器 2)	9-81	运算常数3-6
S2PID(2 个自由度的 PID 控制).		运算处理时间附录-18
SBC(选组计数器)		
SBPI (混合 PI 控制)		[Z]
SEA(传感器报警)		ZN 处理 13-1
SEI(传感器报警禁止)		在切换 1 模式下输出处理 (S. 0UT1) 8-6
SIPD(I-PD 控制)	* * * * * *	在切换 2 模式下输出处理 (S. OUT2) 8-12
SMON(监视器)		时间率示例 (S. DUTY)
SMOUT (手动输出)		折线变换(S. FG)
SMWM(带监视器的手动输出)		正向变化率报警 (DPPA) 3-8
SONF2 (2 位 ON/OFF 控制)		正向变化率报警禁止(DPPI)3-8
SONF3 (3 位 ON/OFF 控制)	* * * * *	执行周期4-1
SPA(停止报警) SPG(程序设定软元件)		中间值9-72 自整定(S. AT1)13-4
SPID (PID 控制)		日
SPIDP(PIDP 控制)		
SR(比率控制)		
SSEL(选择器)		
SSPI (采样 PI 控制)		
SSR(比率控制)		
手动输出(S. MOUT)		
输出变化率限制报警(DMLA)		
输出变化率限制报警禁止(DMLI)		
输出低值报警(MLA)		
输出低值报警禁止(MLI)		
输出高值报警(MHA)		
输出高值报警禁止(MHI)		
输出开路报警(00PA)		
输出开路报警禁止(00PI)		
输出限制器处理功能	5-2	
输入数据	3-5	
死区(S.DBND)	9–95	
死区时间(S. DED)	9–65	
[T]		
TRKF(跟踪标签)		
停止报警(SPA)	3–8	
[W]		
微分法(S.D)	9-63	

备忘录

质保

使用之前请确认以下产品质保的详细说明。

1. 免费质保期限和免费质保范围

在免费质保期内使用本产品时如果出现任何属于三菱责任的故障或缺陷(以下称"故障"),则经销商或三菱服务公司将负责免费维修。

注意如果需要在国内现场或海外维修时,则要收取派遣工程师的费用。对于涉及到更换故障模块后的任何再试运转、维修或现场测试,三菱将不负任何责任。

「免费质保期限]

免费质保期限为自购买日或货到目的地日的一年内。

注意产品从三菱生产并出货之后,最长分销时间为6个月,生产后最长的免费质保期为18个月。维修零部件的免费质保期不得超过修理前的免费质保期。

[免费质保范围]

- (1) 范围局限于按照使用手册、用户手册及产品上的警示标签规定的使用状态、使用方法和使用环境正常使用的情况下。
- (2) 以下情况下,即使在免费质保期内,也要收取维修费用。
 - 1. 因不适当存储或搬运、用户粗心或疏忽而引起的故障。因用户的硬件或软件设计而导致的故障。
 - 2. 因用户在三菱不知晓的情况下对产品进行改造而导致的故障等。
 - 3. 对于装有三菱产品的用户设备,如果根据现有的法定安全措施或工业标准要求配备必需的功能或结构后本可以避免的故障。
 - 4. 如果正确维护或更换了使用手册中指定的耗材(电池、背光灯、保险丝等)后本可以避免的故障。
 - 5. 因火灾或异常电压等外部因素以及因地震、雷电、大风和水灾等不可抗力而导致的故障。
 - 6. 根据从三菱出货时的科技标准还无法预知的原因而导致的故障。
 - 7. 任何非三菱责任或用户承认非三菱责任而导致的故障。

2. 产品停产后的有偿维修期限

- (1) 三菱在本产品停产后的7年内受理该产品的有偿维修。 停产的消息将以三菱技术公告等方式予以通告。
- (2) 产品停产后,将不再提供产品(包括维修零件)。

3. 海外服务

在海外,维修由三菱在当地的海外 FA 中心受理。注意各个 FA 中心的维修条件可能会不同。

4. 意外损失和间接损失不在质保范围内

无论是否在免费质保期内,对于任何非三菱责任的原因而导致的损失、机会损失、因三菱产品故障而引起的用户利润损失、无论能否预测的特殊损失和间接损失、事故赔偿、除三菱以外产品的损失赔偿、用户更换设备、现场机械设备的再调试设备维护、运行测试及其它作业等,三菱将不承担责任。

5. 产品规格的改变

目录、手册或技术文档中的规格如有改变, 恕不另行通知。

6. 产品应用

- (1) 在使用三菱 MELSEC 可编程控制器时,应该符合以下条件:即使在可编程控制器设备出现问题或故障时也不会导致重大事故,并且应在设备外部系统地配备能应付任何问题或故障的备用设备及失效保险功能。
- (2) 三菱可编程控制器是以一般工业用途等为对象设计和制造的。因此,可编程控制器的应用不包括那些会影响公共利益的应用,如核电厂和其它由独立供电公司经营的电厂以及需要特殊质量保证的应用如铁路公司或用于公用设施目的的应用。

另外,可编程控制器的应用不包括航空、医疗应用、焚化和燃烧设备、载人设备、娱乐及休闲设施、安全装置等与人的生命财产密切相关的应用。

然而,对于这些应用,假如用户咨询当地三菱代表机构,提供有特殊要求方案的大纲并提供满足特殊环境的所有细节及用户自主要求,则可以进行一些应用。

 $\frac{\text{SH (NA)} - 080449\text{CHN} - \text{B (0805) MEACH}}{\text{MODEL:}} \quad \text{QNPHCPU-P-PROCESS-C}$

、三菱电机自动化(中国)有限公司

地址:上海市虹桥路1386号三菱电机自动化中心

邮编: 200336

电话: 021-23223030 传真: 021-23223000 网址: http://cn.MitsubishiElectric.com/fa/zh/ 技术支持热线 **400-82I-3030**

扫描二维码,关注官方微博

内容如有更改 恕不另行通知