
MODEL: R3-NE1

Remote I/O R3 Series

ETHERNET INTERFACE MODULE

(Modbus/TCP)

MODEL: R3-NE1-[1][2]

ORDERING INFORMATION

• Code number: R3-NE1-[1][2]

Specify a code from below for each of [1] and [2].

(e.g. R3-NE1-R/CE/Q)

 Specify the specification for option code /Q (e.g. /C01/SET)

[1] POWER INPUT

N: No power supply

(Use with Ver.2.00 or higher versions of Power Supply Module (model: R3-PSx) to conform with CE marking.)

AC Power

M2: 100 - 240 V AC

(Operational voltage range 85 - 264 V, 47 - 66 Hz)*

(CE not available) **K3**: 100 – 120 V AC

(Operational voltage range 85 - 132 V, 47 - 66 Hz) *

(CE not available) **L3**: 200 – 240 V AC

(Operational voltage range 170 - 264 V, 47 - 66 Hz) *

(CE not available)

DC Power R: 24 V DC

(Operational voltage range 24 V ±10 %, ripple 10 %p-p max.) *

* Not selectable for use with independent power modules or network modules with the internal power input options.

[2] OPTIONS (multiple selections)

Standards & Approvals blank: Without CE /CE: CE marking Other Options

blank: none

/Q: Option other than the above (specify the specification)

SPECIFICATIONS OF OPTION: Q (multiple selections)

COATING (For the detail, refer to our web site.)

/C01: Silicone coating /C02: Polyurethane coating /C03: Rubber coating EX-FACTORY SETTING

/SET: Preset according to the Ordering Information Sheet

(No. ESU-8361)

RELATED PRODUCTS

• PC Configurator cable (model: MCN-CON or COP-US)

PC configurator software (model: R3CON)

Downloadable at our web site.

GENERAL SPECIFICATIONS

Connection

Ethernet: RJ-45 connector

Internal bus: Via the Installation Base (model: R3-BSx)
Internal power: Via the Installation Base (model: R3-BSx)
Power input, RUN contact output: M3 separable screw

terminal (torque 0.5 N·m)

Screw terminal: Nickel-plated steel

Isolation: Ethernet to internal bus or internal power to power

supply to RUN contact output to FG

Input error data setting: Input value setting at input module

error with side DIP SW

Dual communication setting: Set with the side DIP switch **Data allocation setting**: Set with the side DIP switch

RUN indicator: Bi-color (green/red) LED; Green ON in normal communication; Red ON when receiving data (Function selected with DIP SW)

ERR indicator: Bi-color (green/red) LED;

Green ON or blinking at communication error; Red ON at transmitting data (Function selected with DIP SW)

■ RUN CONTACT OUTPUT

RUN contact: Turns ON while the green RUN LED is ON

(Ethernet in normal communication). Rated load: 250 V AC @ 0.5 A ($\cos \emptyset = 1$)

30 V DC @ 0.5 A (resistive load)

(Less than 50 V AC to conform with EU Directive)

Maximum switching voltage: 250 V AC or 30 V DC

Maximum switching power: 250 VA or 150 W

Minimum load: 1 V DC @ 1 mA

Mechanical life: 2×10^7 cycles (300 cycles/min.)

When driving an inductive load, external contact protection

and noise quenching recommended.

MODEL: R3-NE1

ETHERNET COMMUNICATION

Communication Standard: IEEE 802.3u Transmission: 10BASE-T, 100BASE-TX

Baud rate: 10/100 Mbps (Auto Negotiation function)

Protocol: Modbus/TCP
Data: RTU (Binary)

Max. number of socket connections: 2

Transmission media: 10BASE-T (STP, Category 5) 100BASE-

TX (STP, Category 5e)

Max. length of fieldbus segment: 100 meters

Ethernet indicator LED: LINK, DPLX, LINK10, LINK100, COL

COL is not mounted for Ver. 4.01 or later. **IP address**: 192.168.0.1 (factory setting);

Selectable with PC Configurator Software (model: R3CON) **Subnet mask**: Configurable via the PC configurator software

(model: R3CON). (Factory setting: 255.255.255.0) **Default gateway**: Configurable via the PC configurator software (model: R3CON). (Ver. 4.01 or later) (Factory

setting: 192.168.0.100)

Port No.: 502

INSTALLATION

Power consumption

•AC

K3: Approx. 20 VA L3: Approx. 28 VA

M2: Approx. 20 VA at 100 V AC Approx. 28 VA at 200 V AC

•DC: Approx. 12 W

Current consumption (no power supply): 100 mA

Output current (power supply): 250 mA continuous at 20 V

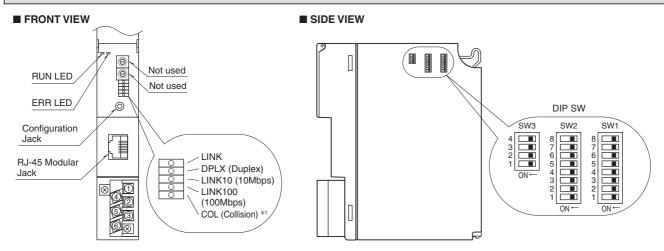
DC; 400 mA for 10 minutes

Operating temperature: -10 to +55°C (14 to 131°F)
Operating humidity: 30 to 90 %RH (non-condensing)
Atmosphere: No corrosive gas or heavy dust
Mounting: Installation Base (model: R3-BSx)

Weight: 200 g (0.44 lb)

PERFORMANCE

Insulation resistance: $\geq 100 \text{ M}\Omega$ with 500 V DC


Dielectric strength: 1500 V AC @ 1 minute (Ethernet to internal bus or internal power to power input to RUN contact

output to FG)

STANDARDS & APPROVALS

EU conformity: EMC Directive EMI EN 61000-6-4 EMS EN 61000-6-2 RoHS Directive

EXTERNAL VIEW

^{*1.} COL is not mounted for Ver. 4.01 or later.

MODBUS FUNCTION CODES & SUPPORTED CODES

■ Data &	Control Functions		
CODE	NAME		
01	Read Coil Status	X	Digital output from the slave (read/write)
02	Read Input Status	X	Status of digital inputs to the slave (read only)
03	Read Holding Registers	X	General purpose register within the slave (read/write)
04	Read Input Registers	X	Collected data from the field by the slave (read only)
05	Force Single Coil	X	Digital output from the slave (read/write)
06	Preset Single Register	Х	General purpose register within the slave (read/write)
07	Read Exception Status		
80	Diagnostics	X	
09	Program 484		
10	Poll 484		
11	Fetch Comm. Event Counter	Х	Fetch a status word and an event counter
12	Fetch Comm. Event Log	Х	A status word, an event counter, a message count and a field of event bytes
13	Program Controller		
14	Poll Controller		
15	Force Multiple Coils	Х	Digital output from the slave (read/write)
16	Preset Multiple Registers	Х	General purpose register within the slave (read/write)
17	Report Slave ID	Х	Slave type / 'RUN' status
18	Program 884/M84		
19	Reset Comm. Link		
20	Read General Reference		
21	Write General Reference		
22	Mask Write 4X Register		
23	Read/Write 4X Register		
24	Read FIFO Queue		

CODE	NAME		
01	Illegal Function	Х	Function code is not allowable for the slave
02	Illegal Data Address	X	Address is not available within the slave
03	Illegal Data Value	Х	Data is not valid for the function
04	Slave Device Failure		
05	Acknowledge		
06	Slave Device Busy		
07	Negative Acknowledge		
08	Memory Parity Error		

■ Diagnostic Subfunctions

CODE	NAME		
00	Return Query Data	Χ	Loop back test
01	Restart Comm. Option	Χ	Reset the slave and clear all counters
02	Return Diagnostic Register	Х	Contents of the diagnostic data (2 bytes)
03	Change ASCII Input Delimiter	Х	Delimiter character of ASCII message
04	Force Listen Only Mode	Х	Force the slave into Listen Only Mode

MODBUS I/O ASSIGNMENT

	ADDRESS	DATA TYPE	DATA
Coil (0X)	1 – 1024		Digital Output (discrete output)
	1 – 1024		Digital Input (discrete input)
lander (43V)	1025 – 1040		Module Status
Inputs (1X)	1041 – 1056		Error Status
	1057 – 1072		Data Error Status
Land Daniston (OV)	1 – 256	I	Analog Input
Input Registers (3X)	257 – 768	F	Analog Input
Haldian Daniston (4V)	1 – 256	I	Analog Output
Holding Registers (4X)	257 – 768	F	Analog Output

I: Integer, 0 – 10000 (0 – 100%)

Note: DO NOT access addresses other than mentioned above. Such access may cause problems such as inadequate operation.

- Module Status indicates whether individual I/O modules are mounted or not. The bit corresponding to the mounted slot turns to "1," and the unmounted slot to "0."
- Error Status indicates error status for each module as described below. The bit corresponding to such module turns to "1."

R3-TSx, R3-RSx, R3-US4: Input burnout

R3-DA16A: Power input in error or disconnected
R3-YSx: Output current error (e.g. load unconnected)
R3-PC16A: External power supply in error or disconnected

• Data Error Status indicates overrange (R3-US4: out of -10% to +110%; the other types: out of -15% to +115%) status for each module. The bit corresponding to such module turns to "1."

F: Floating (32-bit data cannot be accessed using floating addresses.)

MODEL: R3-NE1

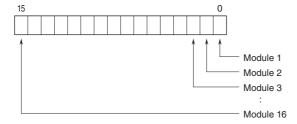
TRANSMISSION DATA DESCRIPTIONS

The DIP SW located at the side of the module specifies each I/O module's data allocation (occupied data area).

For example, when the data areas are assigned as shown below:

Module 1	4
Module 2	4
Module 3	4
Module 4	1
Module 5	1
Module 6	1
Module 7	1

Then the I/O data are assigned as in the table below:


	ADI	POSITION	
Input Registers (3X)	1 – 4,	257 – 264	Slot 1
Holding Registers (4X)	5 – 8,	265 – 272	Slot 2
	9 – 12,	273 – 280	Slot 3
	13,	281 – 282	Slot 4
	14,	283 – 284	Slot 5
	15,	285 – 286	Slot 6
	16,	287 – 288	Slot 7

	ADDRESS	POSITION
Coil (0X)	1 – 64	Slot 1
Inputs (1X)	65 – 128	Slot 2
	129 – 192	Slot 3
	193 – 208	Slot 4
	209 – 224	Slot 5
	225 – 240	Slot 6
	241 – 256	Slot 7

For Coil (0X) and Inputs (1X), addresses 16 times assigned data areas (Data Allocation Type) are allotted with the Data Allocation Type '1' and '4.' With '8' and '16,' 64 (4 \times 16) are automatically allotted.

MODULE STATUS, ERROR STATUS, DATA ERROR STATUS

Shows each module's availability and error status.

I/O DATA DESCRIPTIONS

The data allocations for typical I/O modules are shown below.

Refer to the manual for each module for detailed data allocations.

■ ANALOG DATA (16-bit data, models: R3-SV4, YV4, DS4, YS4, US4, etc.)

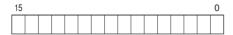
16-bit binary data.

Basically, 0 to 100% of the selected I/O range is converted into 0 to 10000 (binary).

-15 to 0 % is a negative range represented in 2's complement.

In case of R3-US4, -10 to 0% is a negative range represented in 2's complement.

■ TEMPERATURE DATA (16-bit data, models: R3-RS4, TS4, US4, etc.)

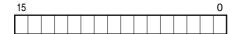

16-bit binary data.

With °C temperature unit, raw data is multiplied by 10. For example, 25.5 °C is converted into 255.

With °F temperature unit, the integer section of raw data is directly converted into the data.

For example, 135.4°F is converted into 135.

Minus temperature is converted into negative values, represented in 2's complements.

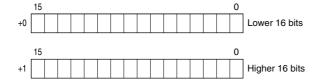


■ ANALOG DATA (16-bit data, models: R3-CT4A, CT4B, etc.)

16-bit binary data.

Integer obtained by multiplying unit value (A) by 100.

In case of CLSE-R5, integer obtained by multiplying unit value (A) by 1000.

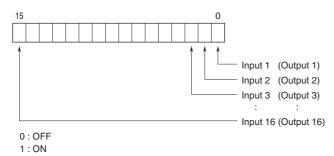


■ ACCUMULATED COUNT DATA (32-bit data, models: R3-PA2, PA4A, WT1, WT4, etc.)

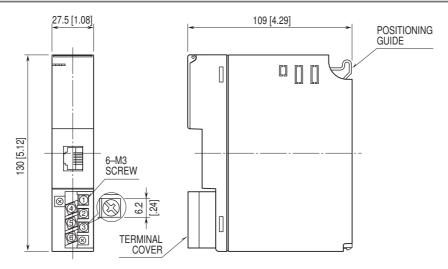
32-bit binary data is used for accumulated counts and encoder positions.

Lower 16 bits are allocated from the lowest address to higher ones, higher 16 bits in turn.

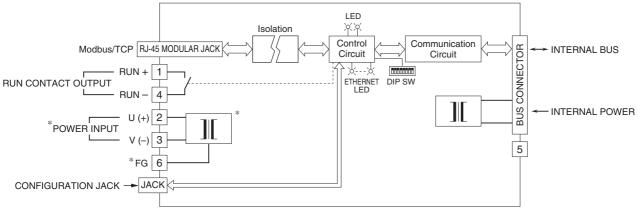
32-bit data cannot be accessed using floating addresses.


■ BCD DATA (32-bit data, models: R3-BA32A, BC32A, etc.)

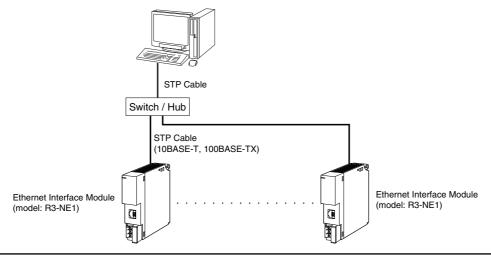
32-bit binary data is used for BCD.


Lower 16 bits are allocated from the lowest address to higher ones, higher 16 bits in turn. 32-bit data cannot be accessed using floating addresses.

■ 16-POINT DISCRETE DATA (models: R3-DA16, DC16, etc.)


EXTERNAL DIMENSIONS & TERMINAL ASSIGNMENTS unit: mm [inch]

SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM


Note: In order to improve EMC performance, bond the FG terminal to ground.

Caution: FG terminal is NOT a protective conductor terminal.

*Not provided with 'No Power Supply' type module.

SYSTEM CONFIGURATION EXAMPLES

R3-NE1 SPECIFICATIONS

Specifications are subject to change without notice.